{"title":"我们可以使用软件缺陷报告来识别漏洞发现策略吗?","authors":"Farzana Ahamed Bhuiyan, Raunak Shakya, A. Rahman","doi":"10.1145/3384217.3385618","DOIUrl":null,"url":null,"abstract":"Daily horror stories related to software vulnerabilities necessitates the understanding of how vulnerabilities are discovered. Identification of data sources that can be leveraged to understand how vulnerabilities are discovered could aid cybersecurity researchers to characterize exploitation of vulnerabilities. The goal of the paper is to help cybersecurity researchers in characterizing vulnerabilities by conducting an empirical study of software bug reports. We apply qualitative analysis on 729, 908, and 5336 open source software (OSS) bug reports respectively, collected from Gentoo, LibreOffice, and Mozilla to investigate if bug reports include vulnerability discovery strategies i.e. sequences of computation and/or cognitive activities that an attacker performs to discover vulnerabilities, where the vulnerability is indexed by a credible source, such as the National Vulnerability Database (NVD). We evaluate two approaches namely, text feature-based approach and regular expression-based approach to automatically identify bug reports that include vulnerability discovery strategies. We observe the Gentoo, LibreOffice, and Mozilla bug reports to include vulnerability discovery strategies. Using text feature-based prediction models, we observe the highest prediction performance for the Mozilla dataset with a recall of 0.78. Using the regular expression-based approach we observe recall to be 0.83 for the same dataset. Findings from our paper provide the groundwork for cybersecurity researchers to use OSS bug reports as a data source for advancing the science of vulnerabilities.","PeriodicalId":205173,"journal":{"name":"Proceedings of the 7th Symposium on Hot Topics in the Science of Security","volume":"462 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can we use software bug reports to identify vulnerability discovery strategies?\",\"authors\":\"Farzana Ahamed Bhuiyan, Raunak Shakya, A. Rahman\",\"doi\":\"10.1145/3384217.3385618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Daily horror stories related to software vulnerabilities necessitates the understanding of how vulnerabilities are discovered. Identification of data sources that can be leveraged to understand how vulnerabilities are discovered could aid cybersecurity researchers to characterize exploitation of vulnerabilities. The goal of the paper is to help cybersecurity researchers in characterizing vulnerabilities by conducting an empirical study of software bug reports. We apply qualitative analysis on 729, 908, and 5336 open source software (OSS) bug reports respectively, collected from Gentoo, LibreOffice, and Mozilla to investigate if bug reports include vulnerability discovery strategies i.e. sequences of computation and/or cognitive activities that an attacker performs to discover vulnerabilities, where the vulnerability is indexed by a credible source, such as the National Vulnerability Database (NVD). We evaluate two approaches namely, text feature-based approach and regular expression-based approach to automatically identify bug reports that include vulnerability discovery strategies. We observe the Gentoo, LibreOffice, and Mozilla bug reports to include vulnerability discovery strategies. Using text feature-based prediction models, we observe the highest prediction performance for the Mozilla dataset with a recall of 0.78. Using the regular expression-based approach we observe recall to be 0.83 for the same dataset. Findings from our paper provide the groundwork for cybersecurity researchers to use OSS bug reports as a data source for advancing the science of vulnerabilities.\",\"PeriodicalId\":205173,\"journal\":{\"name\":\"Proceedings of the 7th Symposium on Hot Topics in the Science of Security\",\"volume\":\"462 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th Symposium on Hot Topics in the Science of Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3384217.3385618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th Symposium on Hot Topics in the Science of Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3384217.3385618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Can we use software bug reports to identify vulnerability discovery strategies?
Daily horror stories related to software vulnerabilities necessitates the understanding of how vulnerabilities are discovered. Identification of data sources that can be leveraged to understand how vulnerabilities are discovered could aid cybersecurity researchers to characterize exploitation of vulnerabilities. The goal of the paper is to help cybersecurity researchers in characterizing vulnerabilities by conducting an empirical study of software bug reports. We apply qualitative analysis on 729, 908, and 5336 open source software (OSS) bug reports respectively, collected from Gentoo, LibreOffice, and Mozilla to investigate if bug reports include vulnerability discovery strategies i.e. sequences of computation and/or cognitive activities that an attacker performs to discover vulnerabilities, where the vulnerability is indexed by a credible source, such as the National Vulnerability Database (NVD). We evaluate two approaches namely, text feature-based approach and regular expression-based approach to automatically identify bug reports that include vulnerability discovery strategies. We observe the Gentoo, LibreOffice, and Mozilla bug reports to include vulnerability discovery strategies. Using text feature-based prediction models, we observe the highest prediction performance for the Mozilla dataset with a recall of 0.78. Using the regular expression-based approach we observe recall to be 0.83 for the same dataset. Findings from our paper provide the groundwork for cybersecurity researchers to use OSS bug reports as a data source for advancing the science of vulnerabilities.