{"title":"基于动态邻域的改进蚁群聚类算法","authors":"Li Mao, M. Shen","doi":"10.1109/ICICISYS.2010.5658498","DOIUrl":null,"url":null,"abstract":"To solve the problems of the excessive clustering time consumption and the redundant numbers of the resulting clusters, commonly encountered with the ant-based clustering algorithms, an improved ant colony clustering algorithm based on dynamic neighborhood is proposed in this paper. The algorithm seeks for pure neighborhoods by performing auto-adaptive adjustments of dynamic neighborhood, and enhances ant's memory by additionally storing the sizes of the pure neighborhoods. The ant can exchange information with other ants, load multiple similar objects at once, and merge the similar neighborhoods to form the final clusters efficiently. Experimental results indicate that this algorithm significantly improves the efficiency and quality of ant colony clustering.","PeriodicalId":339711,"journal":{"name":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An improved ant colony clustering algorithm based on dynamic neighborhood\",\"authors\":\"Li Mao, M. Shen\",\"doi\":\"10.1109/ICICISYS.2010.5658498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problems of the excessive clustering time consumption and the redundant numbers of the resulting clusters, commonly encountered with the ant-based clustering algorithms, an improved ant colony clustering algorithm based on dynamic neighborhood is proposed in this paper. The algorithm seeks for pure neighborhoods by performing auto-adaptive adjustments of dynamic neighborhood, and enhances ant's memory by additionally storing the sizes of the pure neighborhoods. The ant can exchange information with other ants, load multiple similar objects at once, and merge the similar neighborhoods to form the final clusters efficiently. Experimental results indicate that this algorithm significantly improves the efficiency and quality of ant colony clustering.\",\"PeriodicalId\":339711,\"journal\":{\"name\":\"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICISYS.2010.5658498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2010.5658498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An improved ant colony clustering algorithm based on dynamic neighborhood
To solve the problems of the excessive clustering time consumption and the redundant numbers of the resulting clusters, commonly encountered with the ant-based clustering algorithms, an improved ant colony clustering algorithm based on dynamic neighborhood is proposed in this paper. The algorithm seeks for pure neighborhoods by performing auto-adaptive adjustments of dynamic neighborhood, and enhances ant's memory by additionally storing the sizes of the pure neighborhoods. The ant can exchange information with other ants, load multiple similar objects at once, and merge the similar neighborhoods to form the final clusters efficiently. Experimental results indicate that this algorithm significantly improves the efficiency and quality of ant colony clustering.