利用计算机代数方法确定有限分枝席尔宾斯基地毯的化学维数

SIGSAM Bull. Pub Date : 2002-06-02 DOI:10.1145/581316.581318
A. Franz, C. Schulzky, K. Hoffmann
{"title":"利用计算机代数方法确定有限分枝席尔宾斯基地毯的化学维数","authors":"A. Franz, C. Schulzky, K. Hoffmann","doi":"10.1145/581316.581318","DOIUrl":null,"url":null,"abstract":"We present a new algorithm for calculating the chemical dimension <i>d</i><inf>1</inf> of finitely ramified Sierpinski carpets. Using an algorithm of Dijkstra, we compute iteratively, using <sc>Mathematica</sc>, the shortest paths through a carpet. The scaling exponent of the lengths of these shortest paths over the linear size of the carpet is <i>d</i><inf>min</inf> the minimum path dimension, which is related to the chemical dimension.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using computer algebra methods to determine the chemical dimension of finitely ramified Sierpinski carpets\",\"authors\":\"A. Franz, C. Schulzky, K. Hoffmann\",\"doi\":\"10.1145/581316.581318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new algorithm for calculating the chemical dimension <i>d</i><inf>1</inf> of finitely ramified Sierpinski carpets. Using an algorithm of Dijkstra, we compute iteratively, using <sc>Mathematica</sc>, the shortest paths through a carpet. The scaling exponent of the lengths of these shortest paths over the linear size of the carpet is <i>d</i><inf>min</inf> the minimum path dimension, which is related to the chemical dimension.\",\"PeriodicalId\":314801,\"journal\":{\"name\":\"SIGSAM Bull.\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSAM Bull.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/581316.581318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/581316.581318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种计算有限分枝Sierpinski地毯化学维数d1的新算法。使用Dijkstra算法,我们使用Mathematica迭代地计算通过地毯的最短路径。这些最短路径长度在地毯线性尺寸上的缩放指数等于最小路径尺寸,这与化学尺寸有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using computer algebra methods to determine the chemical dimension of finitely ramified Sierpinski carpets
We present a new algorithm for calculating the chemical dimension d1 of finitely ramified Sierpinski carpets. Using an algorithm of Dijkstra, we compute iteratively, using Mathematica, the shortest paths through a carpet. The scaling exponent of the lengths of these shortest paths over the linear size of the carpet is dmin the minimum path dimension, which is related to the chemical dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信