{"title":"利用计算机代数方法确定有限分枝席尔宾斯基地毯的化学维数","authors":"A. Franz, C. Schulzky, K. Hoffmann","doi":"10.1145/581316.581318","DOIUrl":null,"url":null,"abstract":"We present a new algorithm for calculating the chemical dimension <i>d</i><inf>1</inf> of finitely ramified Sierpinski carpets. Using an algorithm of Dijkstra, we compute iteratively, using <sc>Mathematica</sc>, the shortest paths through a carpet. The scaling exponent of the lengths of these shortest paths over the linear size of the carpet is <i>d</i><inf>min</inf> the minimum path dimension, which is related to the chemical dimension.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using computer algebra methods to determine the chemical dimension of finitely ramified Sierpinski carpets\",\"authors\":\"A. Franz, C. Schulzky, K. Hoffmann\",\"doi\":\"10.1145/581316.581318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new algorithm for calculating the chemical dimension <i>d</i><inf>1</inf> of finitely ramified Sierpinski carpets. Using an algorithm of Dijkstra, we compute iteratively, using <sc>Mathematica</sc>, the shortest paths through a carpet. The scaling exponent of the lengths of these shortest paths over the linear size of the carpet is <i>d</i><inf>min</inf> the minimum path dimension, which is related to the chemical dimension.\",\"PeriodicalId\":314801,\"journal\":{\"name\":\"SIGSAM Bull.\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSAM Bull.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/581316.581318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/581316.581318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using computer algebra methods to determine the chemical dimension of finitely ramified Sierpinski carpets
We present a new algorithm for calculating the chemical dimension d1 of finitely ramified Sierpinski carpets. Using an algorithm of Dijkstra, we compute iteratively, using Mathematica, the shortest paths through a carpet. The scaling exponent of the lengths of these shortest paths over the linear size of the carpet is dmin the minimum path dimension, which is related to the chemical dimension.