线性采样法二维探地雷达成像:一种性能评估工具

I. Catapano, F. Soldovieri, L. Crocco
{"title":"线性采样法二维探地雷达成像:一种性能评估工具","authors":"I. Catapano, F. Soldovieri, L. Crocco","doi":"10.1109/IWAGPR.2011.5963862","DOIUrl":null,"url":null,"abstract":"In this communication we discuss the adoption of the Linear Sampling Method (LSM) to data collected within a GPR array-based configuration. In particular, since this simple and effective non-iterative method requires multi-static multiview data to perform the imaging task, we introduce an analytic tool to appraise the relationship between the array aperture and the method's performance and provide numerical examples to show the feasibility of the LSM in 2-D GPR surveys.","PeriodicalId":130006,"journal":{"name":"2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"2D GPR imaging via Linear Sampling Method: A performance assessment tool\",\"authors\":\"I. Catapano, F. Soldovieri, L. Crocco\",\"doi\":\"10.1109/IWAGPR.2011.5963862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this communication we discuss the adoption of the Linear Sampling Method (LSM) to data collected within a GPR array-based configuration. In particular, since this simple and effective non-iterative method requires multi-static multiview data to perform the imaging task, we introduce an analytic tool to appraise the relationship between the array aperture and the method's performance and provide numerical examples to show the feasibility of the LSM in 2-D GPR surveys.\",\"PeriodicalId\":130006,\"journal\":{\"name\":\"2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWAGPR.2011.5963862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAGPR.2011.5963862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本通信中,我们讨论了采用线性采样方法(LSM)来收集基于探地雷达阵列的配置中的数据。特别地,由于这种简单有效的非迭代方法需要多静态多视点数据来完成成像任务,我们引入了一个分析工具来评估阵列孔径与方法性能之间的关系,并提供了数值实例来证明LSM在二维GPR调查中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2D GPR imaging via Linear Sampling Method: A performance assessment tool
In this communication we discuss the adoption of the Linear Sampling Method (LSM) to data collected within a GPR array-based configuration. In particular, since this simple and effective non-iterative method requires multi-static multiview data to perform the imaging task, we introduce an analytic tool to appraise the relationship between the array aperture and the method's performance and provide numerical examples to show the feasibility of the LSM in 2-D GPR surveys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信