利用Web对数据进行语义标注

Leonardo Rigutini, E. Iorio, M. Ernandes, Marco Maggini
{"title":"利用Web对数据进行语义标注","authors":"Leonardo Rigutini, E. Iorio, M. Ernandes, Marco Maggini","doi":"10.1109/WI-IATW.2006.118","DOIUrl":null,"url":null,"abstract":"This paper proposes a system for automatically categorizing terms or lexical entities into a predefined set of semantic domains. We present an approach that exploits the knowledge available in the Web to create a model of each term or entity (entity context lexicons - ECLs). Each profile is simply a list of terms (similar to the bag-of-words representation in text categorization) and it is composed primarily by the words often appearing in the same contexts of the entity. These profiles model the contexts in which the entity usually appears and they can be subsequently processed by an automatic classifier. Moreover, we propose and validate a profile-based categorization model developed for this particular task which uses the ECLs of the training entities to build a profile for each class (class context lexicon - CCL). Finally, we propose a technique for dealing with multi-label classification based on a decision module that exploits a neural network. We show the effectiveness of the proposed approach on a term categorization task using a standard benchmark composed of a set of domain-specific lexicons (WordNetDomains)","PeriodicalId":358971,"journal":{"name":"2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Labeling of Data by Using the Web\",\"authors\":\"Leonardo Rigutini, E. Iorio, M. Ernandes, Marco Maggini\",\"doi\":\"10.1109/WI-IATW.2006.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a system for automatically categorizing terms or lexical entities into a predefined set of semantic domains. We present an approach that exploits the knowledge available in the Web to create a model of each term or entity (entity context lexicons - ECLs). Each profile is simply a list of terms (similar to the bag-of-words representation in text categorization) and it is composed primarily by the words often appearing in the same contexts of the entity. These profiles model the contexts in which the entity usually appears and they can be subsequently processed by an automatic classifier. Moreover, we propose and validate a profile-based categorization model developed for this particular task which uses the ECLs of the training entities to build a profile for each class (class context lexicon - CCL). Finally, we propose a technique for dealing with multi-label classification based on a decision module that exploits a neural network. We show the effectiveness of the proposed approach on a term categorization task using a standard benchmark composed of a set of domain-specific lexicons (WordNetDomains)\",\"PeriodicalId\":358971,\"journal\":{\"name\":\"2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IATW.2006.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IATW.2006.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种将术语或词汇实体自动分类到预定义的语义域集合中的系统。我们提出了一种方法,利用Web上可用的知识来创建每个术语或实体(实体上下文词典- ecl)的模型。每个概要文件只是一个术语列表(类似于文本分类中的词袋表示),它主要由经常出现在实体的相同上下文中的单词组成。这些概要文件对实体通常出现的上下文进行建模,然后由自动分类器对它们进行处理。此外,我们提出并验证了为此特定任务开发的基于概要文件的分类模型,该模型使用训练实体的ecl为每个类构建概要文件(类上下文词典- CCL)。最后,我们提出了一种基于神经网络决策模块的多标签分类处理技术。我们使用由一组特定于领域的词汇(WordNetDomains)组成的标准基准来展示所提出的方法在术语分类任务上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Labeling of Data by Using the Web
This paper proposes a system for automatically categorizing terms or lexical entities into a predefined set of semantic domains. We present an approach that exploits the knowledge available in the Web to create a model of each term or entity (entity context lexicons - ECLs). Each profile is simply a list of terms (similar to the bag-of-words representation in text categorization) and it is composed primarily by the words often appearing in the same contexts of the entity. These profiles model the contexts in which the entity usually appears and they can be subsequently processed by an automatic classifier. Moreover, we propose and validate a profile-based categorization model developed for this particular task which uses the ECLs of the training entities to build a profile for each class (class context lexicon - CCL). Finally, we propose a technique for dealing with multi-label classification based on a decision module that exploits a neural network. We show the effectiveness of the proposed approach on a term categorization task using a standard benchmark composed of a set of domain-specific lexicons (WordNetDomains)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信