从异构非结构化多页发票的小数据集中学习结构化信息

David Emmanuel Katz, C. Guyeux, A. Haimovici, Bastian Silva, Lionel Chamorro, Raul Barriga Rubio, Mahuna Akplogan
{"title":"从异构非结构化多页发票的小数据集中学习结构化信息","authors":"David Emmanuel Katz, C. Guyeux, A. Haimovici, Bastian Silva, Lionel Chamorro, Raul Barriga Rubio, Mahuna Akplogan","doi":"10.5121/csit.2022.121220","DOIUrl":null,"url":null,"abstract":"We propose an end to end approach using graph construction and semantic representation learning to solve the problem of structured information extraction from heterogeneous, semi-structured, and high noise human readable documents. Our system first converts PDF documents into single connected graphs where we represent each token on the page as a node, with vertices consisting of the inverse euclidean distances between tokens. Token, lines, and individual character nodes are augmented with dense text model vectors. We then proceed to represent each node as a vector using a tailored GraphSAGE algorithm that is then used downstream by a simple feedforward network. Using our approach, we achieve state-of-the-art methods when benchmarked against our dataset of 205 PDF invoices. Along with generally published metrics, we introduce a highly punitive yet application specific informative metric that we use to further measure the performance of our model.","PeriodicalId":174755,"journal":{"name":"Artificial Intelligence and Machine Learning","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Structured Information from Small Datasets of Heterogeneous Unstructured Multipage Invoices\",\"authors\":\"David Emmanuel Katz, C. Guyeux, A. Haimovici, Bastian Silva, Lionel Chamorro, Raul Barriga Rubio, Mahuna Akplogan\",\"doi\":\"10.5121/csit.2022.121220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an end to end approach using graph construction and semantic representation learning to solve the problem of structured information extraction from heterogeneous, semi-structured, and high noise human readable documents. Our system first converts PDF documents into single connected graphs where we represent each token on the page as a node, with vertices consisting of the inverse euclidean distances between tokens. Token, lines, and individual character nodes are augmented with dense text model vectors. We then proceed to represent each node as a vector using a tailored GraphSAGE algorithm that is then used downstream by a simple feedforward network. Using our approach, we achieve state-of-the-art methods when benchmarked against our dataset of 205 PDF invoices. Along with generally published metrics, we introduce a highly punitive yet application specific informative metric that we use to further measure the performance of our model.\",\"PeriodicalId\":174755,\"journal\":{\"name\":\"Artificial Intelligence and Machine Learning\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2022.121220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.121220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种端到端方法,使用图构造和语义表示学习来解决从异构、半结构化和高噪声的人类可读文档中提取结构化信息的问题。我们的系统首先将PDF文档转换为单个连接图,其中我们将页面上的每个标记表示为节点,其中顶点由标记之间的逆欧几里得距离组成。标记、线条和单个字符节点用密集文本模型向量进行扩充。然后,我们继续使用定制的GraphSAGE算法将每个节点表示为矢量,然后由一个简单的前馈网络在下游使用该算法。使用我们的方法,当我们对205 PDF发票数据集进行基准测试时,我们实现了最先进的方法。除了一般发布的指标外,我们还引入了一个高度惩罚性但特定于应用程序的信息指标,我们使用它来进一步测量模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Structured Information from Small Datasets of Heterogeneous Unstructured Multipage Invoices
We propose an end to end approach using graph construction and semantic representation learning to solve the problem of structured information extraction from heterogeneous, semi-structured, and high noise human readable documents. Our system first converts PDF documents into single connected graphs where we represent each token on the page as a node, with vertices consisting of the inverse euclidean distances between tokens. Token, lines, and individual character nodes are augmented with dense text model vectors. We then proceed to represent each node as a vector using a tailored GraphSAGE algorithm that is then used downstream by a simple feedforward network. Using our approach, we achieve state-of-the-art methods when benchmarked against our dataset of 205 PDF invoices. Along with generally published metrics, we introduce a highly punitive yet application specific informative metric that we use to further measure the performance of our model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信