序列建模中RNN层与谱WFA秩的关联

F. F. Liza, M. Grzes
{"title":"序列建模中RNN层与谱WFA秩的关联","authors":"F. F. Liza, M. Grzes","doi":"10.18653/v1/W19-3903","DOIUrl":null,"url":null,"abstract":"We analyse Recurrent Neural Networks (RNNs) to understand the significance of multiple LSTM layers. We argue that the Weighted Finite-state Automata (WFA) trained using a spectral learning algorithm are helpful to analyse RNNs. Our results suggest that multiple LSTM layers in RNNs help learning distributed hidden states, but have a smaller impact on the ability to learn long-term dependencies. The analysis is based on the empirical results, however relevant theory (whenever possible) was discussed to justify and support our conclusions.","PeriodicalId":293591,"journal":{"name":"Proceedings of the Workshop on Deep Learning and Formal Languages: Building Bridges","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Relating RNN Layers with the Spectral WFA Ranks in Sequence Modelling\",\"authors\":\"F. F. Liza, M. Grzes\",\"doi\":\"10.18653/v1/W19-3903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyse Recurrent Neural Networks (RNNs) to understand the significance of multiple LSTM layers. We argue that the Weighted Finite-state Automata (WFA) trained using a spectral learning algorithm are helpful to analyse RNNs. Our results suggest that multiple LSTM layers in RNNs help learning distributed hidden states, but have a smaller impact on the ability to learn long-term dependencies. The analysis is based on the empirical results, however relevant theory (whenever possible) was discussed to justify and support our conclusions.\",\"PeriodicalId\":293591,\"journal\":{\"name\":\"Proceedings of the Workshop on Deep Learning and Formal Languages: Building Bridges\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Workshop on Deep Learning and Formal Languages: Building Bridges\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-3903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Deep Learning and Formal Languages: Building Bridges","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们分析了递归神经网络(rnn)来理解多个LSTM层的意义。我们认为使用谱学习算法训练的加权有限状态自动机(WFA)有助于分析rnn。我们的研究结果表明,rnn中的多个LSTM层有助于学习分布式隐藏状态,但对学习长期依赖关系的能力影响较小。分析是基于实证结果,但相关的理论(只要可能)讨论来证明和支持我们的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relating RNN Layers with the Spectral WFA Ranks in Sequence Modelling
We analyse Recurrent Neural Networks (RNNs) to understand the significance of multiple LSTM layers. We argue that the Weighted Finite-state Automata (WFA) trained using a spectral learning algorithm are helpful to analyse RNNs. Our results suggest that multiple LSTM layers in RNNs help learning distributed hidden states, but have a smaller impact on the ability to learn long-term dependencies. The analysis is based on the empirical results, however relevant theory (whenever possible) was discussed to justify and support our conclusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信