{"title":"量子限制纤锌矿纳米结构的无杂散溶液包络函数模型","authors":"Xiangyu Zhou, F. Bertazzi, M. Goano, G. Ghione","doi":"10.1109/NUSOD.2014.6935339","DOIUrl":null,"url":null,"abstract":"We present a multiband envelope-function model for wurtzite nanostructures based on a rigorous numerical procedure to determine operator ordering and band parameters from nonlocal empirical pseudopotential calculations. The proposed approach leads to numerically stable envelope equations that accurately reproduce full-Brillouin-zone subband dispersions of quantum systems obtained within the linear combination of bulk bands.","PeriodicalId":114800,"journal":{"name":"Numerical Simulation of Optoelectronic Devices, 2014","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A spurious-solution-free envelope function model for quantum-confined wurtzite nanostructures\",\"authors\":\"Xiangyu Zhou, F. Bertazzi, M. Goano, G. Ghione\",\"doi\":\"10.1109/NUSOD.2014.6935339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a multiband envelope-function model for wurtzite nanostructures based on a rigorous numerical procedure to determine operator ordering and band parameters from nonlocal empirical pseudopotential calculations. The proposed approach leads to numerically stable envelope equations that accurately reproduce full-Brillouin-zone subband dispersions of quantum systems obtained within the linear combination of bulk bands.\",\"PeriodicalId\":114800,\"journal\":{\"name\":\"Numerical Simulation of Optoelectronic Devices, 2014\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Simulation of Optoelectronic Devices, 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD.2014.6935339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Simulation of Optoelectronic Devices, 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2014.6935339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A spurious-solution-free envelope function model for quantum-confined wurtzite nanostructures
We present a multiband envelope-function model for wurtzite nanostructures based on a rigorous numerical procedure to determine operator ordering and band parameters from nonlocal empirical pseudopotential calculations. The proposed approach leads to numerically stable envelope equations that accurately reproduce full-Brillouin-zone subband dispersions of quantum systems obtained within the linear combination of bulk bands.