用于跟踪间隔很近的目标的粒子滤波器

M. Ekman, E. Sviestins, L. Sjöberg
{"title":"用于跟踪间隔很近的目标的粒子滤波器","authors":"M. Ekman, E. Sviestins, L. Sjöberg","doi":"10.1109/ICIF.2007.4407983","DOIUrl":null,"url":null,"abstract":"In this paper we will consider several algorithms for tracking closely spaced objects. In particular we will concentrate on various particle filter implementations. One particular problem when using a joint multi target particle filter is the so-called mixed labelling problem. This problem amounts to the fact that different particles will have a different labelling w.r.t. target identity. The combination of the mixed labelling problem and naive or straightforward track extraction leads to performance degradation. This will be illustrated and alternative methods to alleviate this effect will be presented.","PeriodicalId":298941,"journal":{"name":"2007 10th International Conference on Information Fusion","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Particle filters for tracking closely spaced targets\",\"authors\":\"M. Ekman, E. Sviestins, L. Sjöberg\",\"doi\":\"10.1109/ICIF.2007.4407983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we will consider several algorithms for tracking closely spaced objects. In particular we will concentrate on various particle filter implementations. One particular problem when using a joint multi target particle filter is the so-called mixed labelling problem. This problem amounts to the fact that different particles will have a different labelling w.r.t. target identity. The combination of the mixed labelling problem and naive or straightforward track extraction leads to performance degradation. This will be illustrated and alternative methods to alleviate this effect will be presented.\",\"PeriodicalId\":298941,\"journal\":{\"name\":\"2007 10th International Conference on Information Fusion\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 10th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2007.4407983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2007.4407983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在本文中,我们将考虑几种算法来跟踪紧密间隔的目标。特别地,我们将专注于各种粒子滤波器的实现。使用联合多目标粒子过滤器时的一个特殊问题是所谓的混合标记问题。这个问题相当于这样一个事实,即不同的粒子将有不同的标记w.r.t.目标身份。混合标记问题和单纯或直接的轨迹提取相结合会导致性能下降。本文将说明这一点,并提出减轻这种影响的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle filters for tracking closely spaced targets
In this paper we will consider several algorithms for tracking closely spaced objects. In particular we will concentrate on various particle filter implementations. One particular problem when using a joint multi target particle filter is the so-called mixed labelling problem. This problem amounts to the fact that different particles will have a different labelling w.r.t. target identity. The combination of the mixed labelling problem and naive or straightforward track extraction leads to performance degradation. This will be illustrated and alternative methods to alleviate this effect will be presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信