上下文提取的机器学习技术分析

M. Granitzer, Mark Kröll, C. Seifert, Andreas S. Rath, Nicolas Weber, Olivia Dietzel, Stefanie N. Lindstaedt
{"title":"上下文提取的机器学习技术分析","authors":"M. Granitzer, Mark Kröll, C. Seifert, Andreas S. Rath, Nicolas Weber, Olivia Dietzel, Stefanie N. Lindstaedt","doi":"10.1109/ICDIM.2008.4746809","DOIUrl":null,"url":null,"abstract":"dasiaContext is keypsila conveys the importance of capturing the digital environment of a knowledge worker. Knowing the userpsilas context offers various possibilities for support, like for example enhancing information delivery or providing work guidance. Hence, user interactions have to be aggregated and mapped to predefined task categories. Without machine learning tools, such an assignment has to be done manually. The identification of suitable machine learning algorithms is necessary in order to ensure accurate and timely classification of the userpsilas context without inducing additional workload. This paper provides a methodology for recording user interactions and an analysis of supervised classification models, feature types and feature selection for automatically detecting the current task and context of a user. Our analysis is based on a real world data set and shows the applicability of machine learning techniques.","PeriodicalId":415013,"journal":{"name":"2008 Third International Conference on Digital Information Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Analysis of machine learning techniques for context extraction\",\"authors\":\"M. Granitzer, Mark Kröll, C. Seifert, Andreas S. Rath, Nicolas Weber, Olivia Dietzel, Stefanie N. Lindstaedt\",\"doi\":\"10.1109/ICDIM.2008.4746809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"dasiaContext is keypsila conveys the importance of capturing the digital environment of a knowledge worker. Knowing the userpsilas context offers various possibilities for support, like for example enhancing information delivery or providing work guidance. Hence, user interactions have to be aggregated and mapped to predefined task categories. Without machine learning tools, such an assignment has to be done manually. The identification of suitable machine learning algorithms is necessary in order to ensure accurate and timely classification of the userpsilas context without inducing additional workload. This paper provides a methodology for recording user interactions and an analysis of supervised classification models, feature types and feature selection for automatically detecting the current task and context of a user. Our analysis is based on a real world data set and shows the applicability of machine learning techniques.\",\"PeriodicalId\":415013,\"journal\":{\"name\":\"2008 Third International Conference on Digital Information Management\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Third International Conference on Digital Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIM.2008.4746809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Third International Conference on Digital Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2008.4746809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

dasiaContext是键盘,它传达了捕获知识工作者的数字环境的重要性。了解用户的上下文为支持提供了各种可能性,例如增强信息传递或提供工作指导。因此,必须聚合用户交互并将其映射到预定义的任务类别。如果没有机器学习工具,这样的任务必须手动完成。识别合适的机器学习算法是必要的,以确保在不引起额外工作量的情况下准确及时地对用户的上下文进行分类。本文提供了一种记录用户交互的方法,并分析了用于自动检测用户当前任务和上下文的监督分类模型、特征类型和特征选择。我们的分析基于真实世界的数据集,并展示了机器学习技术的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of machine learning techniques for context extraction
dasiaContext is keypsila conveys the importance of capturing the digital environment of a knowledge worker. Knowing the userpsilas context offers various possibilities for support, like for example enhancing information delivery or providing work guidance. Hence, user interactions have to be aggregated and mapped to predefined task categories. Without machine learning tools, such an assignment has to be done manually. The identification of suitable machine learning algorithms is necessary in order to ensure accurate and timely classification of the userpsilas context without inducing additional workload. This paper provides a methodology for recording user interactions and an analysis of supervised classification models, feature types and feature selection for automatically detecting the current task and context of a user. Our analysis is based on a real world data set and shows the applicability of machine learning techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信