{"title":"第18届IEEE计算机科学逻辑研讨会论文集","authors":"","doi":"10.1109/LICS.2003.1210038","DOIUrl":null,"url":null,"abstract":"A cornerstone of the theory of proof nets for unit-free multiplicative linear logic (MLL) is the abstract representation of cut-free proofs modulo inessential commutations of rules. The only known extension to additives, based on monomial weights, fails to preserve this key feature: a host of cut-free monomial proof nets can correspond to the same cut-free proof. Thus the problem of finding a satisfactory notion of proof net for unit-free multiplicative-additive linear logic (MALL) has remained open since the inception of linear logic in 1986. We present a new definition of MALL proof net which remains faithful to the cornerstone of the MLL theory.","PeriodicalId":280809,"journal":{"name":"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.","volume":"323 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Proceedings 18th Annual IEEE Symposium on Logic in Computer Science\",\"authors\":\"\",\"doi\":\"10.1109/LICS.2003.1210038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A cornerstone of the theory of proof nets for unit-free multiplicative linear logic (MLL) is the abstract representation of cut-free proofs modulo inessential commutations of rules. The only known extension to additives, based on monomial weights, fails to preserve this key feature: a host of cut-free monomial proof nets can correspond to the same cut-free proof. Thus the problem of finding a satisfactory notion of proof net for unit-free multiplicative-additive linear logic (MALL) has remained open since the inception of linear logic in 1986. We present a new definition of MALL proof net which remains faithful to the cornerstone of the MLL theory.\",\"PeriodicalId\":280809,\"journal\":{\"name\":\"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.\",\"volume\":\"323 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2003.1210038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2003.1210038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proceedings 18th Annual IEEE Symposium on Logic in Computer Science
A cornerstone of the theory of proof nets for unit-free multiplicative linear logic (MLL) is the abstract representation of cut-free proofs modulo inessential commutations of rules. The only known extension to additives, based on monomial weights, fails to preserve this key feature: a host of cut-free monomial proof nets can correspond to the same cut-free proof. Thus the problem of finding a satisfactory notion of proof net for unit-free multiplicative-additive linear logic (MALL) has remained open since the inception of linear logic in 1986. We present a new definition of MALL proof net which remains faithful to the cornerstone of the MLL theory.