基于时间序列数据的云中自动缩放操作建模

Mehran Khan, Yan Liu, H. Alipour, Samneet Singh
{"title":"基于时间序列数据的云中自动缩放操作建模","authors":"Mehran Khan, Yan Liu, H. Alipour, Samneet Singh","doi":"10.1109/SRDSW.2015.20","DOIUrl":null,"url":null,"abstract":"Autoscaling involves complex cloud operations that automate the provisioning and de-provisioning of cloud resources to support continuous development of customer services. Autoscaling depends on a number of decisions derived by aggregating metrics at the infrastructure and the platform level. In this paper, we review existing autoscaling techniques deployed in leading cloud providers. We identify core features and entities of the autoscaling operations as variables. We model these variables that quantify the interactions between these entities and incorporate workload time series data to calibrate the model. Hence the model allows proactive analysis of workload patterns and estimation of the responsiveness of the autoscaling operations. We demonstrate the use of this model with Google cluster trace data.","PeriodicalId":415692,"journal":{"name":"2015 IEEE 34th Symposium on Reliable Distributed Systems Workshop (SRDSW)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Modeling the Autoscaling Operations in Cloud with Time Series Data\",\"authors\":\"Mehran Khan, Yan Liu, H. Alipour, Samneet Singh\",\"doi\":\"10.1109/SRDSW.2015.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autoscaling involves complex cloud operations that automate the provisioning and de-provisioning of cloud resources to support continuous development of customer services. Autoscaling depends on a number of decisions derived by aggregating metrics at the infrastructure and the platform level. In this paper, we review existing autoscaling techniques deployed in leading cloud providers. We identify core features and entities of the autoscaling operations as variables. We model these variables that quantify the interactions between these entities and incorporate workload time series data to calibrate the model. Hence the model allows proactive analysis of workload patterns and estimation of the responsiveness of the autoscaling operations. We demonstrate the use of this model with Google cluster trace data.\",\"PeriodicalId\":415692,\"journal\":{\"name\":\"2015 IEEE 34th Symposium on Reliable Distributed Systems Workshop (SRDSW)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 34th Symposium on Reliable Distributed Systems Workshop (SRDSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SRDSW.2015.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 34th Symposium on Reliable Distributed Systems Workshop (SRDSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDSW.2015.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

自动扩展涉及复杂的云操作,这些操作自动化了云资源的供应和取消供应,以支持客户服务的持续开发。自动伸缩依赖于基础设施和平台级别的聚合指标所产生的许多决策。在本文中,我们回顾了在领先的云提供商中部署的现有自动缩放技术。我们将自动缩放操作的核心特征和实体识别为变量。我们对这些变量进行建模,这些变量量化了这些实体之间的相互作用,并合并了工作负载时间序列数据来校准模型。因此,该模型允许对工作负载模式进行主动分析,并对自动缩放操作的响应性进行估计。我们用Google集群跟踪数据演示了该模型的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the Autoscaling Operations in Cloud with Time Series Data
Autoscaling involves complex cloud operations that automate the provisioning and de-provisioning of cloud resources to support continuous development of customer services. Autoscaling depends on a number of decisions derived by aggregating metrics at the infrastructure and the platform level. In this paper, we review existing autoscaling techniques deployed in leading cloud providers. We identify core features and entities of the autoscaling operations as variables. We model these variables that quantify the interactions between these entities and incorporate workload time series data to calibrate the model. Hence the model allows proactive analysis of workload patterns and estimation of the responsiveness of the autoscaling operations. We demonstrate the use of this model with Google cluster trace data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信