一种评估肘关节接头局部材料变化的方法

Pritha Ghosh, M. Kulkarni, B. Vyvial, J. Ferguson
{"title":"一种评估肘关节接头局部材料变化的方法","authors":"Pritha Ghosh, M. Kulkarni, B. Vyvial, J. Ferguson","doi":"10.1115/pvp2019-93746","DOIUrl":null,"url":null,"abstract":"\n Elbow fittings are manufactured using quenching and tempering heat treatment processes. Such fittings can occasionally exhibit localized regions with lower yield strength than the design target, potentially due to non-uniform heat treatment. This paper presents an analytical methodology to examine the influence of these localized lower yield zones on the load capacity of the affected pipe fitting. In parallel, full-scale testing has been performed to quantify the actual response of the elbows under a combination of different loading conditions. The experimental data is used to validate the analytical approach. Details of the analytical method include a two-fold criterion: a global failure based on elastic–plastic stress analysis and a local failure based on the tri-axial strain limit per ASME Boiler and Pressure Vessel Code Section VIII, Division 2. This paper presents the details of the finite element model development, assessment procedure, validation and parametric analysis of the size and location of the low yield zones in the elbow fittings. The fittings are analyzed for three possible operating scenarios: internal pressure, internal pressure with opening moment and internal pressure with closing moment. To characterize the influence of the low yield zone on the strength of the pipe, a parameter termed as “effective yield strength” is introduced. This approach is further demonstrated and found suitable for predicting burst pressures of components with lower yield zones of various diameters and thicknesses. This assessment method can be further extended to assess other pipeline components that exhibit similar behavior.","PeriodicalId":150804,"journal":{"name":"Volume 3: Design and Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Methodology to Assess Elbow Fittings With Localized Material Variations\",\"authors\":\"Pritha Ghosh, M. Kulkarni, B. Vyvial, J. Ferguson\",\"doi\":\"10.1115/pvp2019-93746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Elbow fittings are manufactured using quenching and tempering heat treatment processes. Such fittings can occasionally exhibit localized regions with lower yield strength than the design target, potentially due to non-uniform heat treatment. This paper presents an analytical methodology to examine the influence of these localized lower yield zones on the load capacity of the affected pipe fitting. In parallel, full-scale testing has been performed to quantify the actual response of the elbows under a combination of different loading conditions. The experimental data is used to validate the analytical approach. Details of the analytical method include a two-fold criterion: a global failure based on elastic–plastic stress analysis and a local failure based on the tri-axial strain limit per ASME Boiler and Pressure Vessel Code Section VIII, Division 2. This paper presents the details of the finite element model development, assessment procedure, validation and parametric analysis of the size and location of the low yield zones in the elbow fittings. The fittings are analyzed for three possible operating scenarios: internal pressure, internal pressure with opening moment and internal pressure with closing moment. To characterize the influence of the low yield zone on the strength of the pipe, a parameter termed as “effective yield strength” is introduced. This approach is further demonstrated and found suitable for predicting burst pressures of components with lower yield zones of various diameters and thicknesses. This assessment method can be further extended to assess other pipeline components that exhibit similar behavior.\",\"PeriodicalId\":150804,\"journal\":{\"name\":\"Volume 3: Design and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Design and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2019-93746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

弯头配件采用淬火和回火热处理工艺制造。这种接头偶尔会出现屈服强度低于设计目标的局部区域,这可能是由于热处理不均匀造成的。本文提出了一种分析方法来检验这些局部低屈服区对受影响管件承载能力的影响。同时,还进行了全尺寸测试,以量化弯头在不同加载条件下的实际响应。实验数据验证了分析方法的正确性。分析方法的细节包括双重准则:基于弹塑性应力分析的整体破坏和基于ASME锅炉和压力容器规范第VIII节第2部分的三轴应变极限的局部破坏。本文详细介绍了弯头接头低屈服区尺寸和位置的有限元模型开发、评估程序、验证和参数分析。分析了管件三种可能的工况:内压、内压带开启力矩和内压带关闭力矩。为了描述低屈服区对管道强度的影响,引入了一个称为“有效屈服强度”的参数。进一步证明了该方法适用于预测具有不同直径和厚度的低屈服区的部件的破裂压力。这种评估方法可以进一步扩展,以评估表现出类似行为的其他管道组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Methodology to Assess Elbow Fittings With Localized Material Variations
Elbow fittings are manufactured using quenching and tempering heat treatment processes. Such fittings can occasionally exhibit localized regions with lower yield strength than the design target, potentially due to non-uniform heat treatment. This paper presents an analytical methodology to examine the influence of these localized lower yield zones on the load capacity of the affected pipe fitting. In parallel, full-scale testing has been performed to quantify the actual response of the elbows under a combination of different loading conditions. The experimental data is used to validate the analytical approach. Details of the analytical method include a two-fold criterion: a global failure based on elastic–plastic stress analysis and a local failure based on the tri-axial strain limit per ASME Boiler and Pressure Vessel Code Section VIII, Division 2. This paper presents the details of the finite element model development, assessment procedure, validation and parametric analysis of the size and location of the low yield zones in the elbow fittings. The fittings are analyzed for three possible operating scenarios: internal pressure, internal pressure with opening moment and internal pressure with closing moment. To characterize the influence of the low yield zone on the strength of the pipe, a parameter termed as “effective yield strength” is introduced. This approach is further demonstrated and found suitable for predicting burst pressures of components with lower yield zones of various diameters and thicknesses. This assessment method can be further extended to assess other pipeline components that exhibit similar behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信