基于低维投影的无监督多维数据探索的特征排序框架

Jinwook Seo, B. Shneiderman
{"title":"基于低维投影的无监督多维数据探索的特征排序框架","authors":"Jinwook Seo, B. Shneiderman","doi":"10.1109/INFVIS.2004.3","DOIUrl":null,"url":null,"abstract":"Exploratory analysis of multidimensional data sets is challenging because of the difficulty in comprehending more than three dimensions. Two fundamental statistical principles for the exploratory analysis are (1) to examine each dimension first and then find relationships among dimensions, and (2) to try graphical displays first and then find numerical summaries (D.S. Moore, (1999). We implement these principles in a novel conceptual framework called the rank-by-feature framework. In the framework, users can choose a ranking criterion interesting to them and sort 1D or 2D axis-parallel projections according to the criterion. We introduce the rank-by-feature prism that is a color-coded lower-triangular matrix that guides users to desired features. Statistical graphs (histogram, boxplot, and scatterplot) and information visualization techniques (overview, coordination, and dynamic query) are combined to help users effectively traverse 1D and 2D axis-parallel projections, and finally to help them interactively find interesting features","PeriodicalId":109217,"journal":{"name":"IEEE Symposium on Information Visualization","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"138","resultStr":"{\"title\":\"A Rank-by-Feature Framework for Unsupervised Multidimensional Data Exploration Using Low Dimensional Projections\",\"authors\":\"Jinwook Seo, B. Shneiderman\",\"doi\":\"10.1109/INFVIS.2004.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploratory analysis of multidimensional data sets is challenging because of the difficulty in comprehending more than three dimensions. Two fundamental statistical principles for the exploratory analysis are (1) to examine each dimension first and then find relationships among dimensions, and (2) to try graphical displays first and then find numerical summaries (D.S. Moore, (1999). We implement these principles in a novel conceptual framework called the rank-by-feature framework. In the framework, users can choose a ranking criterion interesting to them and sort 1D or 2D axis-parallel projections according to the criterion. We introduce the rank-by-feature prism that is a color-coded lower-triangular matrix that guides users to desired features. Statistical graphs (histogram, boxplot, and scatterplot) and information visualization techniques (overview, coordination, and dynamic query) are combined to help users effectively traverse 1D and 2D axis-parallel projections, and finally to help them interactively find interesting features\",\"PeriodicalId\":109217,\"journal\":{\"name\":\"IEEE Symposium on Information Visualization\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"138\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Symposium on Information Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFVIS.2004.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Information Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFVIS.2004.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 138

摘要

多维数据集的探索性分析具有挑战性,因为难以理解超过三个维度。探索性分析的两个基本统计原则是:(1)首先检查每个维度,然后找到维度之间的关系,(2)首先尝试图形显示,然后找到数值摘要(D.S. Moore,(1999))。我们在一个新的概念框架中实现这些原则,称为按特征排序框架。在框架中,用户可以选择自己感兴趣的排序标准,并根据该标准对1D或2D轴平行投影进行排序。我们介绍了按特征排序的棱镜,它是一个颜色编码的下三角形矩阵,可以引导用户找到所需的特征。统计图形(直方图、箱线图和散点图)和信息可视化技术(概述、协调和动态查询)相结合,帮助用户有效地遍历1D和2D轴平行投影,最终帮助他们交互式地找到有趣的特征
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Rank-by-Feature Framework for Unsupervised Multidimensional Data Exploration Using Low Dimensional Projections
Exploratory analysis of multidimensional data sets is challenging because of the difficulty in comprehending more than three dimensions. Two fundamental statistical principles for the exploratory analysis are (1) to examine each dimension first and then find relationships among dimensions, and (2) to try graphical displays first and then find numerical summaries (D.S. Moore, (1999). We implement these principles in a novel conceptual framework called the rank-by-feature framework. In the framework, users can choose a ranking criterion interesting to them and sort 1D or 2D axis-parallel projections according to the criterion. We introduce the rank-by-feature prism that is a color-coded lower-triangular matrix that guides users to desired features. Statistical graphs (histogram, boxplot, and scatterplot) and information visualization techniques (overview, coordination, and dynamic query) are combined to help users effectively traverse 1D and 2D axis-parallel projections, and finally to help them interactively find interesting features
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信