基于深度学习自编码器的电流源模型波形压缩

W. Raslan, Y. Ismail
{"title":"基于深度学习自编码器的电流源模型波形压缩","authors":"W. Raslan, Y. Ismail","doi":"10.1109/icecs53924.2021.9665573","DOIUrl":null,"url":null,"abstract":"Modeling complex cell behavior is critical for accurate static timing analysis. Huge waveform data needed for current source models explodes technology file size and degrades design flow performance. We used deep learning nonlinear Autoencoders to compress voltage and current waveforms and compared them with singular component analysis approach. Autoencoders gave up to 3.37x compression ratio for voltage waveforms with average percentage error below 0.85% better than SVD approach. Autoencoders achieved 1.7x compression ratio for complex rising-edge current waveforms at model loss of 7.6e-5 and comparable results to SVD approach for the falling-edge waveforms. SVD remains more computationally efficient than Autoencoders.","PeriodicalId":448558,"journal":{"name":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep Learning Autoencoder-based Compression for Current Source Model Waveforms\",\"authors\":\"W. Raslan, Y. Ismail\",\"doi\":\"10.1109/icecs53924.2021.9665573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling complex cell behavior is critical for accurate static timing analysis. Huge waveform data needed for current source models explodes technology file size and degrades design flow performance. We used deep learning nonlinear Autoencoders to compress voltage and current waveforms and compared them with singular component analysis approach. Autoencoders gave up to 3.37x compression ratio for voltage waveforms with average percentage error below 0.85% better than SVD approach. Autoencoders achieved 1.7x compression ratio for complex rising-edge current waveforms at model loss of 7.6e-5 and comparable results to SVD approach for the falling-edge waveforms. SVD remains more computationally efficient than Autoencoders.\",\"PeriodicalId\":448558,\"journal\":{\"name\":\"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icecs53924.2021.9665573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icecs53924.2021.9665573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

模拟复杂的细胞行为是精确的静态定时分析的关键。当前源模型所需的巨大波形数据会增加技术文件的大小,降低设计流程的性能。我们使用深度学习非线性自编码器压缩电压和电流波形,并将其与奇异分量分析方法进行比较。自编码器对电压波形的压缩比高达3.37倍,平均百分比误差低于0.85%,优于奇异值分解方法。在模型损失为7.6e-5的情况下,自动编码器对复杂的上升边缘电流波形实现了1.7倍的压缩比,对下降边缘波形的压缩效果与SVD方法相当。SVD仍然比自动编码器更具计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Autoencoder-based Compression for Current Source Model Waveforms
Modeling complex cell behavior is critical for accurate static timing analysis. Huge waveform data needed for current source models explodes technology file size and degrades design flow performance. We used deep learning nonlinear Autoencoders to compress voltage and current waveforms and compared them with singular component analysis approach. Autoencoders gave up to 3.37x compression ratio for voltage waveforms with average percentage error below 0.85% better than SVD approach. Autoencoders achieved 1.7x compression ratio for complex rising-edge current waveforms at model loss of 7.6e-5 and comparable results to SVD approach for the falling-edge waveforms. SVD remains more computationally efficient than Autoencoders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信