{"title":"一种新的自适应反演控制律增强电力系统暂态稳定性","authors":"A. Mitra, Mriganka Mukherjee, K. Naik","doi":"10.1109/C3IT.2015.7060160","DOIUrl":null,"url":null,"abstract":"In this paper a novel non linear feedback excitation controller has been proposed for improvement of transient stability of power systems. The design of the controller is based on the adaptive backstepping control principle. The controller takes into consideration system uncertainties. A significant merit of this non linear controller in comparison with existing non linear excitation control schemes is its ability to maintain transient stability even under the occurrence of large disturbances, such as a 3-phase fault at the generator terminals. Another advantage is that the proposed technique does not require the existence of a solution of a designed algebraic Riccati equation unlike the controllers based on the robust nonlinear Direct Feedback Linearization (DFL) technique. Simulation results show the rapid convergence of the power angle and the rotor speed to their equilibrium values following the occurrence of a large sudden fault.","PeriodicalId":402311,"journal":{"name":"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Enhancement of power system transient stability using a novel adaptive backstepping control law\",\"authors\":\"A. Mitra, Mriganka Mukherjee, K. Naik\",\"doi\":\"10.1109/C3IT.2015.7060160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a novel non linear feedback excitation controller has been proposed for improvement of transient stability of power systems. The design of the controller is based on the adaptive backstepping control principle. The controller takes into consideration system uncertainties. A significant merit of this non linear controller in comparison with existing non linear excitation control schemes is its ability to maintain transient stability even under the occurrence of large disturbances, such as a 3-phase fault at the generator terminals. Another advantage is that the proposed technique does not require the existence of a solution of a designed algebraic Riccati equation unlike the controllers based on the robust nonlinear Direct Feedback Linearization (DFL) technique. Simulation results show the rapid convergence of the power angle and the rotor speed to their equilibrium values following the occurrence of a large sudden fault.\",\"PeriodicalId\":402311,\"journal\":{\"name\":\"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/C3IT.2015.7060160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/C3IT.2015.7060160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancement of power system transient stability using a novel adaptive backstepping control law
In this paper a novel non linear feedback excitation controller has been proposed for improvement of transient stability of power systems. The design of the controller is based on the adaptive backstepping control principle. The controller takes into consideration system uncertainties. A significant merit of this non linear controller in comparison with existing non linear excitation control schemes is its ability to maintain transient stability even under the occurrence of large disturbances, such as a 3-phase fault at the generator terminals. Another advantage is that the proposed technique does not require the existence of a solution of a designed algebraic Riccati equation unlike the controllers based on the robust nonlinear Direct Feedback Linearization (DFL) technique. Simulation results show the rapid convergence of the power angle and the rotor speed to their equilibrium values following the occurrence of a large sudden fault.