基于能量二次化的正弦-戈登方程线性保能傅立叶伪谱方法

Yuezheng Gong, Qi Hong
{"title":"基于能量二次化的正弦-戈登方程线性保能傅立叶伪谱方法","authors":"Yuezheng Gong, Qi Hong","doi":"10.1109/IBCAST.2019.8667252","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a linear-implicit energy-preserving Fourier pseudospectral method for the sine-Gordon equation. Based on (invariant) energy quadratization technique, we first reformulate the sine-Gordon equation to an equivalent form with a quadratic energy functional. Then the reformulated system is discretized by the Fourier pseudospectral method in space and the linear-implicit Crank-Nicolson method in time. The new fully discrete scheme is proved to preserve the modified energy conservation law in the full-discrete level, and the linear system resulting from the scheme is shown to be uniquely solvable. Numerical examples are conducted to demonstrate the conservation of energy and the numerical performance of the scheme.","PeriodicalId":335329,"journal":{"name":"2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A linearly energy-preserving Fourier pseudospectral method based on energy quadratization for the sine-Gordon equation\",\"authors\":\"Yuezheng Gong, Qi Hong\",\"doi\":\"10.1109/IBCAST.2019.8667252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a linear-implicit energy-preserving Fourier pseudospectral method for the sine-Gordon equation. Based on (invariant) energy quadratization technique, we first reformulate the sine-Gordon equation to an equivalent form with a quadratic energy functional. Then the reformulated system is discretized by the Fourier pseudospectral method in space and the linear-implicit Crank-Nicolson method in time. The new fully discrete scheme is proved to preserve the modified energy conservation law in the full-discrete level, and the linear system resulting from the scheme is shown to be uniquely solvable. Numerical examples are conducted to demonstrate the conservation of energy and the numerical performance of the scheme.\",\"PeriodicalId\":335329,\"journal\":{\"name\":\"2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBCAST.2019.8667252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBCAST.2019.8667252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种正弦戈登方程的线性隐式保能傅立叶伪谱方法。基于(不变)能量二次化技术,我们首先用二次能量泛函将正弦-戈登方程转化为等价形式。然后在空间上采用傅立叶伪谱法,在时间上采用线性隐式的Crank-Nicolson方法对系统进行离散。证明了新的全离散格式在全离散水平上保持了修正的能量守恒律,并证明了该格式所得到的线性系统是唯一可解的。通过数值算例验证了该方案的能量守恒性和数值性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A linearly energy-preserving Fourier pseudospectral method based on energy quadratization for the sine-Gordon equation
In this paper, we develop a linear-implicit energy-preserving Fourier pseudospectral method for the sine-Gordon equation. Based on (invariant) energy quadratization technique, we first reformulate the sine-Gordon equation to an equivalent form with a quadratic energy functional. Then the reformulated system is discretized by the Fourier pseudospectral method in space and the linear-implicit Crank-Nicolson method in time. The new fully discrete scheme is proved to preserve the modified energy conservation law in the full-discrete level, and the linear system resulting from the scheme is shown to be uniquely solvable. Numerical examples are conducted to demonstrate the conservation of energy and the numerical performance of the scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信