线性漂移忆阻器模型的传输特性和带宽限制

Joakim Alvbrant, V. Keshmiri, J. wikner
{"title":"线性漂移忆阻器模型的传输特性和带宽限制","authors":"Joakim Alvbrant, V. Keshmiri, J. wikner","doi":"10.1109/ECCTD.2015.7300037","DOIUrl":null,"url":null,"abstract":"The linear-drift memristor model, suggested by HP Labs a few years ago, is used in this work together with two window functions. From the equations describing the memristor model, the transfer characteristics of a memristor is formulated and analyzed. A first-order estimation of the cut-off frequency is shown, that illustrates the bandwidth limitation of the memristor and how it varies with some of its physical parameters. The design space is elaborated upon and it is shown that the state speed, the variation of the doped and undoped regions of the memristor, is inversely proportional to the physical length, and depth of the device. The transfer characteristics is simulated for Joglekar-Wolf, and Biolek window functions and the results are analyzed. The Joglekar-Wolf window function causes a distinct behavior in the tranfer characteristics at cut-off frequency. The Biolek window function on the other hand gives a smooth state transfer function, at the cost of loosing the one-to-one mapping between charge and state. We also elaborate on the design constraints derived from the transfer characteristics.","PeriodicalId":148014,"journal":{"name":"2015 European Conference on Circuit Theory and Design (ECCTD)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Transfer characteristics and bandwidth limitation in a linear-drift memristor model\",\"authors\":\"Joakim Alvbrant, V. Keshmiri, J. wikner\",\"doi\":\"10.1109/ECCTD.2015.7300037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The linear-drift memristor model, suggested by HP Labs a few years ago, is used in this work together with two window functions. From the equations describing the memristor model, the transfer characteristics of a memristor is formulated and analyzed. A first-order estimation of the cut-off frequency is shown, that illustrates the bandwidth limitation of the memristor and how it varies with some of its physical parameters. The design space is elaborated upon and it is shown that the state speed, the variation of the doped and undoped regions of the memristor, is inversely proportional to the physical length, and depth of the device. The transfer characteristics is simulated for Joglekar-Wolf, and Biolek window functions and the results are analyzed. The Joglekar-Wolf window function causes a distinct behavior in the tranfer characteristics at cut-off frequency. The Biolek window function on the other hand gives a smooth state transfer function, at the cost of loosing the one-to-one mapping between charge and state. We also elaborate on the design constraints derived from the transfer characteristics.\",\"PeriodicalId\":148014,\"journal\":{\"name\":\"2015 European Conference on Circuit Theory and Design (ECCTD)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 European Conference on Circuit Theory and Design (ECCTD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCTD.2015.7300037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Conference on Circuit Theory and Design (ECCTD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD.2015.7300037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

HP实验室几年前提出的线性漂移忆阻器模型与两个窗口函数一起用于这项工作。从描述忆阻器模型的方程出发,推导并分析了忆阻器的传递特性。最后给出了截止频率的一阶估计,说明了忆阻器的带宽限制及其随某些物理参数的变化情况。对设计空间进行了详细阐述,并表明状态速度,即忆阻器掺杂和未掺杂区域的变化,与器件的物理长度和深度成反比。模拟了Joglekar-Wolf模型的传递特性,并对Biolek窗口函数进行了分析。在截止频率处,Joglekar-Wolf窗函数导致了明显的传递特性。另一方面,Biolek窗口函数给出了一个平滑的状态传递函数,代价是失去了电荷和状态之间的一对一映射。我们还详细阐述了由传递特性引起的设计约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer characteristics and bandwidth limitation in a linear-drift memristor model
The linear-drift memristor model, suggested by HP Labs a few years ago, is used in this work together with two window functions. From the equations describing the memristor model, the transfer characteristics of a memristor is formulated and analyzed. A first-order estimation of the cut-off frequency is shown, that illustrates the bandwidth limitation of the memristor and how it varies with some of its physical parameters. The design space is elaborated upon and it is shown that the state speed, the variation of the doped and undoped regions of the memristor, is inversely proportional to the physical length, and depth of the device. The transfer characteristics is simulated for Joglekar-Wolf, and Biolek window functions and the results are analyzed. The Joglekar-Wolf window function causes a distinct behavior in the tranfer characteristics at cut-off frequency. The Biolek window function on the other hand gives a smooth state transfer function, at the cost of loosing the one-to-one mapping between charge and state. We also elaborate on the design constraints derived from the transfer characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信