代码混合社交媒体文本中的文本规范化

Sukanya Dutta, Tista Saha, Somnath Banerjee, S. Naskar
{"title":"代码混合社交媒体文本中的文本规范化","authors":"Sukanya Dutta, Tista Saha, Somnath Banerjee, S. Naskar","doi":"10.1109/ReTIS.2015.7232908","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of text normalization, an often overlooked problem in natural language processing, in code-mixed social media text. The objective of the work presented here is to correct English spelling errors in code-mixed social media text that contains English words as well as Romanized transliteration of words from another language, in this case Bangla. The targeted research problem also entails solving another problem, that of word-level language identification in code-mixed social media text. We employ a CRF based machine learning approach followed by post-processing heuristics for the word-level language identification task. For spelling correction, we used the noisy channel model of spelling correction. In addition, the spell checker model presented here tackles wordplay, contracted words and phonetic variations. Overall, the word-level language identification achieved 90.5% accuracy and the spell checker achieved 69.43% accuracy on the detected English words.","PeriodicalId":161306,"journal":{"name":"2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Text normalization in code-mixed social media text\",\"authors\":\"Sukanya Dutta, Tista Saha, Somnath Banerjee, S. Naskar\",\"doi\":\"10.1109/ReTIS.2015.7232908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of text normalization, an often overlooked problem in natural language processing, in code-mixed social media text. The objective of the work presented here is to correct English spelling errors in code-mixed social media text that contains English words as well as Romanized transliteration of words from another language, in this case Bangla. The targeted research problem also entails solving another problem, that of word-level language identification in code-mixed social media text. We employ a CRF based machine learning approach followed by post-processing heuristics for the word-level language identification task. For spelling correction, we used the noisy channel model of spelling correction. In addition, the spell checker model presented here tackles wordplay, contracted words and phonetic variations. Overall, the word-level language identification achieved 90.5% accuracy and the spell checker achieved 69.43% accuracy on the detected English words.\",\"PeriodicalId\":161306,\"journal\":{\"name\":\"2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReTIS.2015.7232908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReTIS.2015.7232908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文解决了混合代码的社交媒体文本的文本规范化问题,这是自然语言处理中经常被忽视的问题。本文提出的工作目标是纠正代码混合社交媒体文本中的英语拼写错误,这些文本包含英语单词以及来自另一种语言(在本例中为孟加拉语)的罗马化音译单词。有针对性的研究问题还需要解决另一个问题,即代码混合社交媒体文本中的词级语言识别问题。我们采用基于CRF的机器学习方法,然后采用后处理启发式方法进行单词级语言识别任务。对于拼写纠错,我们使用了拼写纠错的噪声通道模型。此外,这里介绍的拼写检查器模型处理文字游戏,缩略语和语音变化。总体而言,单词级语言识别的准确率达到90.5%,拼写检查器对检测到的英语单词的准确率达到69.43%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text normalization in code-mixed social media text
This paper addresses the problem of text normalization, an often overlooked problem in natural language processing, in code-mixed social media text. The objective of the work presented here is to correct English spelling errors in code-mixed social media text that contains English words as well as Romanized transliteration of words from another language, in this case Bangla. The targeted research problem also entails solving another problem, that of word-level language identification in code-mixed social media text. We employ a CRF based machine learning approach followed by post-processing heuristics for the word-level language identification task. For spelling correction, we used the noisy channel model of spelling correction. In addition, the spell checker model presented here tackles wordplay, contracted words and phonetic variations. Overall, the word-level language identification achieved 90.5% accuracy and the spell checker achieved 69.43% accuracy on the detected English words.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信