基于视频的人脸识别语义模型

Dihong Gong, Kai Zhu, Zhifeng Li, Y. Qiao
{"title":"基于视频的人脸识别语义模型","authors":"Dihong Gong, Kai Zhu, Zhifeng Li, Y. Qiao","doi":"10.1109/ICINFA.2013.6720507","DOIUrl":null,"url":null,"abstract":"Video-based face recognition has attracted a great deal of attention in recent years due to its wide applications. The challenge of video-based face recognition comes from several aspects. First, video data involves many frames, which increases data size and processing complexity. Second, key frames extracted from videos are usually of high intra-personal discrepancy due to variations in expressions, poses, and illuminations. In order to address these problems, we propose a novel semantic based subspace model to improve the performance of video based face recognition. The basic idea is to construct an appropriate low-dimensional subspace for each person, upon which a semantic model is built to classify the key frames of the person into specific class. After the semantic classification, the key frames belonging to the same classes, i.e. the same semantics, are used to train the linear classifiers for recognition. Extensive experiments on a large face video database (XM2VTS) clearly show that our approach obtains a significant performance improvement over the traditional approaches.","PeriodicalId":250844,"journal":{"name":"2013 IEEE International Conference on Information and Automation (ICIA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A semantic model for video based face recognition\",\"authors\":\"Dihong Gong, Kai Zhu, Zhifeng Li, Y. Qiao\",\"doi\":\"10.1109/ICINFA.2013.6720507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video-based face recognition has attracted a great deal of attention in recent years due to its wide applications. The challenge of video-based face recognition comes from several aspects. First, video data involves many frames, which increases data size and processing complexity. Second, key frames extracted from videos are usually of high intra-personal discrepancy due to variations in expressions, poses, and illuminations. In order to address these problems, we propose a novel semantic based subspace model to improve the performance of video based face recognition. The basic idea is to construct an appropriate low-dimensional subspace for each person, upon which a semantic model is built to classify the key frames of the person into specific class. After the semantic classification, the key frames belonging to the same classes, i.e. the same semantics, are used to train the linear classifiers for recognition. Extensive experiments on a large face video database (XM2VTS) clearly show that our approach obtains a significant performance improvement over the traditional approaches.\",\"PeriodicalId\":250844,\"journal\":{\"name\":\"2013 IEEE International Conference on Information and Automation (ICIA)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Information and Automation (ICIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2013.6720507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2013.6720507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

基于视频的人脸识别由于其广泛的应用,近年来引起了广泛的关注。基于视频的人脸识别面临的挑战来自几个方面。首先,视频数据涉及许多帧,这增加了数据的大小和处理的复杂性。其次,从视频中提取的关键帧通常由于表情、姿势和照明的变化而具有很高的个人内部差异。为了解决这些问题,我们提出了一种新的基于语义的子空间模型来提高基于视频的人脸识别的性能。其基本思想是为每个人构建合适的低维子空间,在此基础上建立语义模型,将人物的关键帧划分为特定的类。语义分类后,使用属于同一类即同一语义的关键帧来训练线性分类器进行识别。在大型人脸视频数据库(XM2VTS)上的大量实验清楚地表明,我们的方法比传统方法获得了显着的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A semantic model for video based face recognition
Video-based face recognition has attracted a great deal of attention in recent years due to its wide applications. The challenge of video-based face recognition comes from several aspects. First, video data involves many frames, which increases data size and processing complexity. Second, key frames extracted from videos are usually of high intra-personal discrepancy due to variations in expressions, poses, and illuminations. In order to address these problems, we propose a novel semantic based subspace model to improve the performance of video based face recognition. The basic idea is to construct an appropriate low-dimensional subspace for each person, upon which a semantic model is built to classify the key frames of the person into specific class. After the semantic classification, the key frames belonging to the same classes, i.e. the same semantics, are used to train the linear classifiers for recognition. Extensive experiments on a large face video database (XM2VTS) clearly show that our approach obtains a significant performance improvement over the traditional approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信