基于主动变异遗传算法的特征子集选择

Marc Jermaine Pontiveros, Geoffrey A. Solano, J. Diaz, Jaime D. L. Caro
{"title":"基于主动变异遗传算法的特征子集选择","authors":"Marc Jermaine Pontiveros, Geoffrey A. Solano, J. Diaz, Jaime D. L. Caro","doi":"10.1109/TENCON54134.2021.9707450","DOIUrl":null,"url":null,"abstract":"In this work, the algorithmic approaches to Feature Subset Selection (FSS) are reviewed. FSS is the technique of selecting a subset of relevant features for building parsimonious models. One successful algorithm in selecting relevant features in Brain-Computing Interface is the Genetic Algorithm with Aggressive Mutation (GAAM). We implemented a scikit-learn compatible library for GAAM and determined its applicability with classification tasks in general. Identifying relevant features in a predictive modeling task improves the interpretability of the model, reduces its complexity and the time requirement for training.","PeriodicalId":405859,"journal":{"name":"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Feature Subset Selection Using Genetic Algorithm with Aggressive Mutation for Classification Problem\",\"authors\":\"Marc Jermaine Pontiveros, Geoffrey A. Solano, J. Diaz, Jaime D. L. Caro\",\"doi\":\"10.1109/TENCON54134.2021.9707450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the algorithmic approaches to Feature Subset Selection (FSS) are reviewed. FSS is the technique of selecting a subset of relevant features for building parsimonious models. One successful algorithm in selecting relevant features in Brain-Computing Interface is the Genetic Algorithm with Aggressive Mutation (GAAM). We implemented a scikit-learn compatible library for GAAM and determined its applicability with classification tasks in general. Identifying relevant features in a predictive modeling task improves the interpretability of the model, reduces its complexity and the time requirement for training.\",\"PeriodicalId\":405859,\"journal\":{\"name\":\"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON54134.2021.9707450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON54134.2021.9707450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对特征子集选择(FSS)的算法方法进行了综述。FSS是一种选择相关特征子集来构建精简模型的技术。一种成功的脑计算接口相关特征选择算法是带有侵略性突变的遗传算法(GAAM)。我们为GAAM实现了一个scikit-learn兼容库,并确定了它在一般分类任务中的适用性。识别预测建模任务中的相关特征可以提高模型的可解释性,降低模型的复杂性和训练时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Subset Selection Using Genetic Algorithm with Aggressive Mutation for Classification Problem
In this work, the algorithmic approaches to Feature Subset Selection (FSS) are reviewed. FSS is the technique of selecting a subset of relevant features for building parsimonious models. One successful algorithm in selecting relevant features in Brain-Computing Interface is the Genetic Algorithm with Aggressive Mutation (GAAM). We implemented a scikit-learn compatible library for GAAM and determined its applicability with classification tasks in general. Identifying relevant features in a predictive modeling task improves the interpretability of the model, reduces its complexity and the time requirement for training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信