{"title":"通过通信抽象灵活地组成组件","authors":"Fabian Gilson, V. Englebert","doi":"10.5220/0005830304420449","DOIUrl":null,"url":null,"abstract":"Software architectures are often abstracted as a combination of reusable components connected to each other by various means. Specifications of components' semantics have been widely studied and many modeling languages have been proposed from coarse-grained loosely-defined elements to operational objects with behavioral semantics that may be generated and executed in a dedicated framework. All these modeling facilities have proven their advantages in many domains through either case studies or real-world applications. However, most of those approaches either consider a subset of composition facilities, i.e. the available types of bindings between components, or do not even consider communication properties at all, staying at behavioral-related compatibility between components. Verifications of communication-related properties are then postponed to the hand of software developers and finally considered at deployment-time only. Part of a general architecture framework, we propose an abstraction formalism to specify communication paths between components. This modeling facility relies on a taxonomy of types of links and the specifications of communication protocols. This protocol serves as a reification element between abstract component compositions, architecture instances and deployment infrastructure, making explicit communication-related constraints and properties.","PeriodicalId":360028,"journal":{"name":"2016 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible component composition through communication abstraction\",\"authors\":\"Fabian Gilson, V. Englebert\",\"doi\":\"10.5220/0005830304420449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software architectures are often abstracted as a combination of reusable components connected to each other by various means. Specifications of components' semantics have been widely studied and many modeling languages have been proposed from coarse-grained loosely-defined elements to operational objects with behavioral semantics that may be generated and executed in a dedicated framework. All these modeling facilities have proven their advantages in many domains through either case studies or real-world applications. However, most of those approaches either consider a subset of composition facilities, i.e. the available types of bindings between components, or do not even consider communication properties at all, staying at behavioral-related compatibility between components. Verifications of communication-related properties are then postponed to the hand of software developers and finally considered at deployment-time only. Part of a general architecture framework, we propose an abstraction formalism to specify communication paths between components. This modeling facility relies on a taxonomy of types of links and the specifications of communication protocols. This protocol serves as a reification element between abstract component compositions, architecture instances and deployment infrastructure, making explicit communication-related constraints and properties.\",\"PeriodicalId\":360028,\"journal\":{\"name\":\"2016 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0005830304420449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005830304420449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flexible component composition through communication abstraction
Software architectures are often abstracted as a combination of reusable components connected to each other by various means. Specifications of components' semantics have been widely studied and many modeling languages have been proposed from coarse-grained loosely-defined elements to operational objects with behavioral semantics that may be generated and executed in a dedicated framework. All these modeling facilities have proven their advantages in many domains through either case studies or real-world applications. However, most of those approaches either consider a subset of composition facilities, i.e. the available types of bindings between components, or do not even consider communication properties at all, staying at behavioral-related compatibility between components. Verifications of communication-related properties are then postponed to the hand of software developers and finally considered at deployment-time only. Part of a general architecture framework, we propose an abstraction formalism to specify communication paths between components. This modeling facility relies on a taxonomy of types of links and the specifications of communication protocols. This protocol serves as a reification element between abstract component compositions, architecture instances and deployment infrastructure, making explicit communication-related constraints and properties.