改进时间分数阶Burgers方程的最优参数同伦分析方法

Aslı Alkan
{"title":"改进时间分数阶Burgers方程的最优参数同伦分析方法","authors":"Aslı Alkan","doi":"10.55213/kmujens.1206517","DOIUrl":null,"url":null,"abstract":"The aim of the study is to reduce the absolute error by determining the optimal value of this arbitrary parameter using the residual error function related to the selection of the arbitrary parameter h. Some numerical examples are solved and compared to existing results. The homotopy analysis method has been successfully implemented to Burgers equation to obtain serial solutions. On the base of the solutions obtained for the required equations, it has been shown that this method is applicable to time-fractional partial differential equations.","PeriodicalId":423199,"journal":{"name":"Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improving Homotopy Analysis Method with An Optimal Parameter for Time-Fractional Burgers Equation\",\"authors\":\"Aslı Alkan\",\"doi\":\"10.55213/kmujens.1206517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the study is to reduce the absolute error by determining the optimal value of this arbitrary parameter using the residual error function related to the selection of the arbitrary parameter h. Some numerical examples are solved and compared to existing results. The homotopy analysis method has been successfully implemented to Burgers equation to obtain serial solutions. On the base of the solutions obtained for the required equations, it has been shown that this method is applicable to time-fractional partial differential equations.\",\"PeriodicalId\":423199,\"journal\":{\"name\":\"Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55213/kmujens.1206517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55213/kmujens.1206517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究的目的是利用与任意参数h的选择有关的残差函数确定该任意参数的最优值,从而减小绝对误差。求解了一些数值算例,并与已有结果进行了比较。成功地将同伦分析方法应用于Burgers方程的序列解。在得到所需方程解的基础上,证明了该方法适用于时间分数阶偏微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Homotopy Analysis Method with An Optimal Parameter for Time-Fractional Burgers Equation
The aim of the study is to reduce the absolute error by determining the optimal value of this arbitrary parameter using the residual error function related to the selection of the arbitrary parameter h. Some numerical examples are solved and compared to existing results. The homotopy analysis method has been successfully implemented to Burgers equation to obtain serial solutions. On the base of the solutions obtained for the required equations, it has been shown that this method is applicable to time-fractional partial differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信