Black-Scholes方程的解析解:Adomian分解法与李代数方法

Tresor Landu Ngoyi, R. Bokolo, R. M. Mabela
{"title":"Black-Scholes方程的解析解:Adomian分解法与李代数方法","authors":"Tresor Landu Ngoyi, R. Bokolo, R. M. Mabela","doi":"10.18326/hipotenusa.v4i1.7183","DOIUrl":null,"url":null,"abstract":"In this paper, we compare two relevant methods to find Analytical solution of the Black-Scholes Equation. First, we apply the Adomian Decomposition Method as in [2], to obtain a solution to the aforementioned equation with boundary condition for a European option. Secondly, we apply the Lie algebraic Approach for determining the solution as in [7]. Those two methods conducted us to investigate the thin line between the underlying results. Finally, we suggest a simple enhanced Due Diligence on both approaches.","PeriodicalId":134360,"journal":{"name":"Hipotenusa : Journal of Mathematical Society","volume":"26 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical solution to the Black-Scholes Equation: Adomian Decomposition Method Versus Lie Algebraic Approach\",\"authors\":\"Tresor Landu Ngoyi, R. Bokolo, R. M. Mabela\",\"doi\":\"10.18326/hipotenusa.v4i1.7183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we compare two relevant methods to find Analytical solution of the Black-Scholes Equation. First, we apply the Adomian Decomposition Method as in [2], to obtain a solution to the aforementioned equation with boundary condition for a European option. Secondly, we apply the Lie algebraic Approach for determining the solution as in [7]. Those two methods conducted us to investigate the thin line between the underlying results. Finally, we suggest a simple enhanced Due Diligence on both approaches.\",\"PeriodicalId\":134360,\"journal\":{\"name\":\"Hipotenusa : Journal of Mathematical Society\",\"volume\":\"26 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hipotenusa : Journal of Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18326/hipotenusa.v4i1.7183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hipotenusa : Journal of Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18326/hipotenusa.v4i1.7183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文比较了求解Black-Scholes方程解析解的两种相关方法。首先,我们应用Adomian分解方法,得到了具有边界条件的欧式期权方程的解。其次,我们应用李代数方法来确定[7]中的解。这两种方法引导我们调查潜在结果之间的细微差别。最后,我们建议对这两种方法进行简单的强化尽职调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical solution to the Black-Scholes Equation: Adomian Decomposition Method Versus Lie Algebraic Approach
In this paper, we compare two relevant methods to find Analytical solution of the Black-Scholes Equation. First, we apply the Adomian Decomposition Method as in [2], to obtain a solution to the aforementioned equation with boundary condition for a European option. Secondly, we apply the Lie algebraic Approach for determining the solution as in [7]. Those two methods conducted us to investigate the thin line between the underlying results. Finally, we suggest a simple enhanced Due Diligence on both approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信