基于可扩展卷积神经网络的解码器侧HEVC质量增强

Ren Yang, Mai Xu, Zulin Wang
{"title":"基于可扩展卷积神经网络的解码器侧HEVC质量增强","authors":"Ren Yang, Mai Xu, Zulin Wang","doi":"10.1109/ICME.2017.8019299","DOIUrl":null,"url":null,"abstract":"The latest High Efficiency Video Coding (HEVC) has been increasingly used to generate video streams over Internet. However, the decoded HEVC video streams may incur severe quality degradation, especially at low bit-rates. Thus, it is necessary to enhance visual quality of HEVC videos at the decoder side. To this end, we propose in this paper a Decoder-side Scalable Convolutional Neural Network (DS-CNN) approach to achieve quality enhancement for HEVC, which does not require any modification of the encoder. In particular, our DS-CNN approach learns a model of Convo-lutional Neural Network (CNN) to reduce distortion of both I and B/P frames in HEVC. It is different from the existing CNN-based quality enhancement approaches, which only handle intra coding distortion, thus not suitable for B/P frames. Furthermore, a scalable structure is included in our DS-CNN, suchthat the computational complexity of our DS-CNN approach is adjustable to the changing computational resources. Finally, the experimental results show the effectiveness of our DS-CNN approach in enhancing quality for both I and B/P frames of HEVC.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":"{\"title\":\"Decoder-side HEVC quality enhancement with scalable convolutional neural network\",\"authors\":\"Ren Yang, Mai Xu, Zulin Wang\",\"doi\":\"10.1109/ICME.2017.8019299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The latest High Efficiency Video Coding (HEVC) has been increasingly used to generate video streams over Internet. However, the decoded HEVC video streams may incur severe quality degradation, especially at low bit-rates. Thus, it is necessary to enhance visual quality of HEVC videos at the decoder side. To this end, we propose in this paper a Decoder-side Scalable Convolutional Neural Network (DS-CNN) approach to achieve quality enhancement for HEVC, which does not require any modification of the encoder. In particular, our DS-CNN approach learns a model of Convo-lutional Neural Network (CNN) to reduce distortion of both I and B/P frames in HEVC. It is different from the existing CNN-based quality enhancement approaches, which only handle intra coding distortion, thus not suitable for B/P frames. Furthermore, a scalable structure is included in our DS-CNN, suchthat the computational complexity of our DS-CNN approach is adjustable to the changing computational resources. Finally, the experimental results show the effectiveness of our DS-CNN approach in enhancing quality for both I and B/P frames of HEVC.\",\"PeriodicalId\":330977,\"journal\":{\"name\":\"2017 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"210 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"95\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2017.8019299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

摘要

最新的高效视频编码(HEVC)已越来越多地用于在互联网上生成视频流。然而,解码的HEVC视频流可能会导致严重的质量下降,特别是在低比特率下。因此,有必要在解码器侧提高HEVC视频的视觉质量。为此,我们在本文中提出了一种解码器侧可扩展卷积神经网络(DS-CNN)方法来实现HEVC的质量增强,该方法不需要对编码器进行任何修改。特别是,我们的DS-CNN方法学习了卷积神经网络(CNN)模型,以减少HEVC中I帧和B/P帧的失真。它不同于现有的基于cnn的质量增强方法,只处理帧内编码失真,不适合B/P帧。此外,我们的DS-CNN中包含了一个可扩展的结构,这样我们的DS-CNN方法的计算复杂度可以根据不断变化的计算资源进行调整。最后,实验结果表明了DS-CNN方法在提高HEVC I帧和B/P帧质量方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoder-side HEVC quality enhancement with scalable convolutional neural network
The latest High Efficiency Video Coding (HEVC) has been increasingly used to generate video streams over Internet. However, the decoded HEVC video streams may incur severe quality degradation, especially at low bit-rates. Thus, it is necessary to enhance visual quality of HEVC videos at the decoder side. To this end, we propose in this paper a Decoder-side Scalable Convolutional Neural Network (DS-CNN) approach to achieve quality enhancement for HEVC, which does not require any modification of the encoder. In particular, our DS-CNN approach learns a model of Convo-lutional Neural Network (CNN) to reduce distortion of both I and B/P frames in HEVC. It is different from the existing CNN-based quality enhancement approaches, which only handle intra coding distortion, thus not suitable for B/P frames. Furthermore, a scalable structure is included in our DS-CNN, suchthat the computational complexity of our DS-CNN approach is adjustable to the changing computational resources. Finally, the experimental results show the effectiveness of our DS-CNN approach in enhancing quality for both I and B/P frames of HEVC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信