{"title":"个性化推荐系统集成标签和项目分类","authors":"Huizhi Liang, Yue Xu, Yuefeng Li","doi":"10.3233/WIA-2012-0246","DOIUrl":null,"url":null,"abstract":"The social tags in Web 2.0 are becoming another important information source to profile users' interests and preferences to make personalized recommendations. To solve the problem of low information sharing caused by the free-style vocabulary of tags and the long tails of the distribution of tags and items, this paper proposes an approach to integrate the social tags given by users and the item taxonomy with standard vocabulary and hierarchical structure provided by experts to make personalized recommendations. The experimental results show that the proposed approach can effectively improve the information sharing and recommendation accuracy.","PeriodicalId":263450,"journal":{"name":"Web Intell. Agent Syst.","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Personalized recommender systems integrating tags and item taxonomy\",\"authors\":\"Huizhi Liang, Yue Xu, Yuefeng Li\",\"doi\":\"10.3233/WIA-2012-0246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The social tags in Web 2.0 are becoming another important information source to profile users' interests and preferences to make personalized recommendations. To solve the problem of low information sharing caused by the free-style vocabulary of tags and the long tails of the distribution of tags and items, this paper proposes an approach to integrate the social tags given by users and the item taxonomy with standard vocabulary and hierarchical structure provided by experts to make personalized recommendations. The experimental results show that the proposed approach can effectively improve the information sharing and recommendation accuracy.\",\"PeriodicalId\":263450,\"journal\":{\"name\":\"Web Intell. Agent Syst.\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intell. Agent Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/WIA-2012-0246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intell. Agent Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/WIA-2012-0246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
Web 2.0中的社会标签正在成为另一个重要的信息源,用于分析用户的兴趣和偏好,从而做出个性化的推荐。针对标签的自由式词汇以及标签和物品分布的长尾现象导致的信息共享度低的问题,本文提出了一种将用户给出的社交标签和物品分类法与专家提供的标准词汇和层次结构相结合的方法,进行个性化推荐。实验结果表明,该方法可以有效地提高信息共享和推荐精度。
Personalized recommender systems integrating tags and item taxonomy
The social tags in Web 2.0 are becoming another important information source to profile users' interests and preferences to make personalized recommendations. To solve the problem of low information sharing caused by the free-style vocabulary of tags and the long tails of the distribution of tags and items, this paper proposes an approach to integrate the social tags given by users and the item taxonomy with standard vocabulary and hierarchical structure provided by experts to make personalized recommendations. The experimental results show that the proposed approach can effectively improve the information sharing and recommendation accuracy.