F. Sakibaev, M. Holyavka, V. Koroleva, V. Artyukhov
{"title":"两种海洋热藓-果苷酶表面带电和疏水氨基酸的分布","authors":"F. Sakibaev, M. Holyavka, V. Koroleva, V. Artyukhov","doi":"10.3390/eccs2020-07550","DOIUrl":null,"url":null,"abstract":": Thermotoga maritima beta-fructosidases are enzymes that release beta-D-fructose from sucrose, raffinose, and fructan polymers such as inulin. The surfaces of beta-fructosidases 1UYP and 1W2T from Thermotoga maritima were studied in this work. It was showed that amino acids are not distributed equally on the surfaces of the enzymes. Several clusters of charged and hydrophobic residues were detected at pH 7.0. Such clusters were detected by calculation of the distances between them. It was determined that on surfaces of beta-fructosidases PDB ID: 1UYP and PDB ID: 1W2T, 96% and 95% of charged amino acids and also 50% and 42% of hydrophobic amino acids form clusters, respectively. Six clusters of charged amino acids on the surface of beta-fructosidase 1UYP and five clusters on the surface of beta-fructosidase 1W2T were detected. The composition of such clusters is presented. Both types of beta-fructosidase have three clusters of hydrophobic amino acids on their surface. These facts should be considered when choosing immobilization conditions. It was shown that a charged matrix is more promising for the immobilization of beta-fructosidases 1UYP and 1W2T from Thermotoga maritima due to the possibility of binding without any significant loss of activity due to their overlapping active center. Hydrophobic carriers are less promising due to the probable active site overlap. Such binding may have a loss of enzyme activity as a result.","PeriodicalId":151361,"journal":{"name":"Proceedings of 1st International Electronic Conference on Catalysis Sciences","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of Charged and Hydrophobic Amino Acids on the Surfaces of Two Types of Beta-Fructosidase from Thermotoga maritima\",\"authors\":\"F. Sakibaev, M. Holyavka, V. Koroleva, V. Artyukhov\",\"doi\":\"10.3390/eccs2020-07550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Thermotoga maritima beta-fructosidases are enzymes that release beta-D-fructose from sucrose, raffinose, and fructan polymers such as inulin. The surfaces of beta-fructosidases 1UYP and 1W2T from Thermotoga maritima were studied in this work. It was showed that amino acids are not distributed equally on the surfaces of the enzymes. Several clusters of charged and hydrophobic residues were detected at pH 7.0. Such clusters were detected by calculation of the distances between them. It was determined that on surfaces of beta-fructosidases PDB ID: 1UYP and PDB ID: 1W2T, 96% and 95% of charged amino acids and also 50% and 42% of hydrophobic amino acids form clusters, respectively. Six clusters of charged amino acids on the surface of beta-fructosidase 1UYP and five clusters on the surface of beta-fructosidase 1W2T were detected. The composition of such clusters is presented. Both types of beta-fructosidase have three clusters of hydrophobic amino acids on their surface. These facts should be considered when choosing immobilization conditions. It was shown that a charged matrix is more promising for the immobilization of beta-fructosidases 1UYP and 1W2T from Thermotoga maritima due to the possibility of binding without any significant loss of activity due to their overlapping active center. Hydrophobic carriers are less promising due to the probable active site overlap. Such binding may have a loss of enzyme activity as a result.\",\"PeriodicalId\":151361,\"journal\":{\"name\":\"Proceedings of 1st International Electronic Conference on Catalysis Sciences\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1st International Electronic Conference on Catalysis Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/eccs2020-07550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1st International Electronic Conference on Catalysis Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/eccs2020-07550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distribution of Charged and Hydrophobic Amino Acids on the Surfaces of Two Types of Beta-Fructosidase from Thermotoga maritima
: Thermotoga maritima beta-fructosidases are enzymes that release beta-D-fructose from sucrose, raffinose, and fructan polymers such as inulin. The surfaces of beta-fructosidases 1UYP and 1W2T from Thermotoga maritima were studied in this work. It was showed that amino acids are not distributed equally on the surfaces of the enzymes. Several clusters of charged and hydrophobic residues were detected at pH 7.0. Such clusters were detected by calculation of the distances between them. It was determined that on surfaces of beta-fructosidases PDB ID: 1UYP and PDB ID: 1W2T, 96% and 95% of charged amino acids and also 50% and 42% of hydrophobic amino acids form clusters, respectively. Six clusters of charged amino acids on the surface of beta-fructosidase 1UYP and five clusters on the surface of beta-fructosidase 1W2T were detected. The composition of such clusters is presented. Both types of beta-fructosidase have three clusters of hydrophobic amino acids on their surface. These facts should be considered when choosing immobilization conditions. It was shown that a charged matrix is more promising for the immobilization of beta-fructosidases 1UYP and 1W2T from Thermotoga maritima due to the possibility of binding without any significant loss of activity due to their overlapping active center. Hydrophobic carriers are less promising due to the probable active site overlap. Such binding may have a loss of enzyme activity as a result.