低维特征投影的互子空间扩展方法

D. Veljkovic, K. Robbins, D. Rubino, N. Hatsopoulos
{"title":"低维特征投影的互子空间扩展方法","authors":"D. Veljkovic, K. Robbins, D. Rubino, N. Hatsopoulos","doi":"10.1109/ICIP.2007.4379189","DOIUrl":null,"url":null,"abstract":"Face recognition algorithms based on mutual subspace methods (MSM) map segmented faces to single points on a feature manifold and then apply manifold learning techniques to classify the results. This paper proposes a generic extension to MSM for analysis of features in high-throughput recordings. We apply this method to analyze short duration overlapping waves in synthetic data and multielectrode brain recordings. We compare different feature space topologies and projection techniques, including MDS, ISOMAP and Laplacian eigenmaps. Overall we find that ISOMAP shows the least sensitivity to noise and provides the best association between distance in feature space and Euclidean distance in projection space. For non-noisy data, Laplacian eigenmaps show the least sensitivity to feature space topology.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Extension of Mutual Subspace Method for Low Dimensional Feature Projection\",\"authors\":\"D. Veljkovic, K. Robbins, D. Rubino, N. Hatsopoulos\",\"doi\":\"10.1109/ICIP.2007.4379189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognition algorithms based on mutual subspace methods (MSM) map segmented faces to single points on a feature manifold and then apply manifold learning techniques to classify the results. This paper proposes a generic extension to MSM for analysis of features in high-throughput recordings. We apply this method to analyze short duration overlapping waves in synthetic data and multielectrode brain recordings. We compare different feature space topologies and projection techniques, including MDS, ISOMAP and Laplacian eigenmaps. Overall we find that ISOMAP shows the least sensitivity to noise and provides the best association between distance in feature space and Euclidean distance in projection space. For non-noisy data, Laplacian eigenmaps show the least sensitivity to feature space topology.\",\"PeriodicalId\":131177,\"journal\":{\"name\":\"2007 IEEE International Conference on Image Processing\",\"volume\":\"173 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2007.4379189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于互子空间方法(MSM)的人脸识别算法将被分割的人脸映射到特征流形上的单个点,然后应用流形学习技术对结果进行分类。本文提出了对MSM的一种通用扩展,用于分析高吞吐量录音的特征。我们将此方法应用于分析合成数据和多电极脑记录中的短时间重叠波。我们比较了不同的特征空间拓扑和投影技术,包括MDS、ISOMAP和拉普拉斯特征映射。总体而言,我们发现ISOMAP对噪声的敏感性最低,并且在特征空间中的距离和投影空间中的欧几里得距离之间提供了最好的关联。对于无噪声数据,拉普拉斯特征映射对特征空间拓扑的敏感性最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extension of Mutual Subspace Method for Low Dimensional Feature Projection
Face recognition algorithms based on mutual subspace methods (MSM) map segmented faces to single points on a feature manifold and then apply manifold learning techniques to classify the results. This paper proposes a generic extension to MSM for analysis of features in high-throughput recordings. We apply this method to analyze short duration overlapping waves in synthetic data and multielectrode brain recordings. We compare different feature space topologies and projection techniques, including MDS, ISOMAP and Laplacian eigenmaps. Overall we find that ISOMAP shows the least sensitivity to noise and provides the best association between distance in feature space and Euclidean distance in projection space. For non-noisy data, Laplacian eigenmaps show the least sensitivity to feature space topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信