可视化Web应用程序执行日志以改进软件安全缺陷定位

M. A. Puentes, Yunsen Lei, Noëlle Rakotondravony, Lane Harrison, Craig A. Shue
{"title":"可视化Web应用程序执行日志以改进软件安全缺陷定位","authors":"M. A. Puentes, Yunsen Lei, Noëlle Rakotondravony, Lane Harrison, Craig A. Shue","doi":"10.1109/saner53432.2022.00138","DOIUrl":null,"url":null,"abstract":"Interactive web-based applications play an important role for both service providers and consumers. However, web applications tend to be complex, produce high-volume data, and are often ripe for attack. Attack analysis and remediation are complicated by adversary obfuscation and the difficulty in assembling and analyzing logs. In this work, we explore the web application analysis task through log file fusion, distillation, and visualization. Our approach consists of visualizing the logs of web and database traffic with detailed function execution traces. We establish causal links between events and their associated behaviors. We evaluate the effectiveness of this process using data volume reduction statistics, user interaction models, and usage scenarios. Across a set of scenarios, we find that our techniques can filter at least 97.5% of log data and reduce analysis time by 93–96%.","PeriodicalId":437520,"journal":{"name":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visualizing Web Application Execution Logs to Improve Software Security Defect Localization\",\"authors\":\"M. A. Puentes, Yunsen Lei, Noëlle Rakotondravony, Lane Harrison, Craig A. Shue\",\"doi\":\"10.1109/saner53432.2022.00138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interactive web-based applications play an important role for both service providers and consumers. However, web applications tend to be complex, produce high-volume data, and are often ripe for attack. Attack analysis and remediation are complicated by adversary obfuscation and the difficulty in assembling and analyzing logs. In this work, we explore the web application analysis task through log file fusion, distillation, and visualization. Our approach consists of visualizing the logs of web and database traffic with detailed function execution traces. We establish causal links between events and their associated behaviors. We evaluate the effectiveness of this process using data volume reduction statistics, user interaction models, and usage scenarios. Across a set of scenarios, we find that our techniques can filter at least 97.5% of log data and reduce analysis time by 93–96%.\",\"PeriodicalId\":437520,\"journal\":{\"name\":\"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/saner53432.2022.00138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/saner53432.2022.00138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

交互式的基于web的应用程序对服务提供者和消费者都扮演着重要的角色。然而,web应用程序往往是复杂的,产生大量的数据,并且往往是成熟的攻击。攻击分析和补救由于攻击者的混淆和收集和分析日志的困难而变得复杂。在这项工作中,我们通过日志文件融合、蒸馏和可视化来探索web应用程序分析任务。我们的方法包括可视化web和数据库流量日志以及详细的函数执行跟踪。我们在事件和相关行为之间建立因果关系。我们使用数据量减少统计、用户交互模型和使用场景来评估此过程的有效性。在一组场景中,我们发现我们的技术可以过滤至少97.5%的日志数据,并将分析时间减少93-96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualizing Web Application Execution Logs to Improve Software Security Defect Localization
Interactive web-based applications play an important role for both service providers and consumers. However, web applications tend to be complex, produce high-volume data, and are often ripe for attack. Attack analysis and remediation are complicated by adversary obfuscation and the difficulty in assembling and analyzing logs. In this work, we explore the web application analysis task through log file fusion, distillation, and visualization. Our approach consists of visualizing the logs of web and database traffic with detailed function execution traces. We establish causal links between events and their associated behaviors. We evaluate the effectiveness of this process using data volume reduction statistics, user interaction models, and usage scenarios. Across a set of scenarios, we find that our techniques can filter at least 97.5% of log data and reduce analysis time by 93–96%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信