基于视觉零件相似度的三维形状检索

A. Godil, A. I. Wagan, S. Bres, Xiaolan Li
{"title":"基于视觉零件相似度的三维形状检索","authors":"A. Godil, A. I. Wagan, S. Bres, Xiaolan Li","doi":"10.1109/AIPR.2009.5466316","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel algorithm for 3D shape searching based on the visual similarity by cutting the object into parts. This method rectify some of the shortcomings of the visual similarity based methods, so that it can better account for objects with deformation, articulation, concave areas, and parts of the object not visible because of self occlusion. As the first step, the 3D objects are partitioned into a number of parts by using cutting planes or by mesh segmentation. Then a number of silhouettes from different directions are rendered of those parts. Then Zernike moments are applied on the silhouettes to generate shape descriptors. The distance measure is based on minimizing the distance among all the combinations of shape descriptors and then these distances are used for similarity based searching.","PeriodicalId":266025,"journal":{"name":"2009 IEEE Applied Imagery Pattern Recognition Workshop (AIPR 2009)","volume":"245 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D shape retrieval by visual parts similarity\",\"authors\":\"A. Godil, A. I. Wagan, S. Bres, Xiaolan Li\",\"doi\":\"10.1109/AIPR.2009.5466316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a novel algorithm for 3D shape searching based on the visual similarity by cutting the object into parts. This method rectify some of the shortcomings of the visual similarity based methods, so that it can better account for objects with deformation, articulation, concave areas, and parts of the object not visible because of self occlusion. As the first step, the 3D objects are partitioned into a number of parts by using cutting planes or by mesh segmentation. Then a number of silhouettes from different directions are rendered of those parts. Then Zernike moments are applied on the silhouettes to generate shape descriptors. The distance measure is based on minimizing the distance among all the combinations of shape descriptors and then these distances are used for similarity based searching.\",\"PeriodicalId\":266025,\"journal\":{\"name\":\"2009 IEEE Applied Imagery Pattern Recognition Workshop (AIPR 2009)\",\"volume\":\"245 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Applied Imagery Pattern Recognition Workshop (AIPR 2009)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2009.5466316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Applied Imagery Pattern Recognition Workshop (AIPR 2009)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2009.5466316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于视觉相似性的三维形状搜索算法。该方法纠正了基于视觉相似度方法的一些缺点,使其能够更好地解释具有变形、衔接、凹区域以及物体因自身遮挡而不可见的部分。首先,通过切割平面或网格分割将三维物体分割成多个部分。然后从不同的方向渲染这些部分的一些剪影。然后在轮廓上应用泽尼克矩来生成形状描述符。距离度量是基于最小化所有形状描述符组合之间的距离,然后将这些距离用于基于相似性的搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D shape retrieval by visual parts similarity
In this paper we propose a novel algorithm for 3D shape searching based on the visual similarity by cutting the object into parts. This method rectify some of the shortcomings of the visual similarity based methods, so that it can better account for objects with deformation, articulation, concave areas, and parts of the object not visible because of self occlusion. As the first step, the 3D objects are partitioned into a number of parts by using cutting planes or by mesh segmentation. Then a number of silhouettes from different directions are rendered of those parts. Then Zernike moments are applied on the silhouettes to generate shape descriptors. The distance measure is based on minimizing the distance among all the combinations of shape descriptors and then these distances are used for similarity based searching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信