广义信息理论的软聚类有效性指标

Yang Lei, J. Bezdek, Jeffrey Chan, X. Nguyen, Simone Romano, J. Bailey
{"title":"广义信息理论的软聚类有效性指标","authors":"Yang Lei, J. Bezdek, Jeffrey Chan, X. Nguyen, Simone Romano, J. Bailey","doi":"10.1109/CIDM.2014.7008144","DOIUrl":null,"url":null,"abstract":"There have been a large number of external validity indices proposed for cluster validity. One such class of cluster comparison indices is the information theoretic measures, due to their strong mathematical foundation and their ability to detect non-linear relationships. However, they are devised for evaluating crisp (hard) partitions. In this paper, we generalize eight information theoretic crisp indices to soft clusterings, so that they can be used with partitions of any type (i.e., crisp or soft, with soft including fuzzy, probabilistic and possibilistic cases). We present experimental results to demonstrate the effectiveness of the generalized information theoretic indices.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Generalized information theoretic cluster validity indices for soft clusterings\",\"authors\":\"Yang Lei, J. Bezdek, Jeffrey Chan, X. Nguyen, Simone Romano, J. Bailey\",\"doi\":\"10.1109/CIDM.2014.7008144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There have been a large number of external validity indices proposed for cluster validity. One such class of cluster comparison indices is the information theoretic measures, due to their strong mathematical foundation and their ability to detect non-linear relationships. However, they are devised for evaluating crisp (hard) partitions. In this paper, we generalize eight information theoretic crisp indices to soft clusterings, so that they can be used with partitions of any type (i.e., crisp or soft, with soft including fuzzy, probabilistic and possibilistic cases). We present experimental results to demonstrate the effectiveness of the generalized information theoretic indices.\",\"PeriodicalId\":117542,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDM.2014.7008144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

已有大量的外部效度指标被提出用于聚类效度。其中一类聚类比较指标是信息理论测度,由于其强大的数学基础和检测非线性关系的能力。然而,它们是为评估脆(硬)分区而设计的。本文将8个信息论脆指标推广到软聚类中,使得它们可以用于任何类型的分区(即脆或软,软包括模糊情况、概率情况和可能性情况)。实验结果证明了广义信息论指标的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized information theoretic cluster validity indices for soft clusterings
There have been a large number of external validity indices proposed for cluster validity. One such class of cluster comparison indices is the information theoretic measures, due to their strong mathematical foundation and their ability to detect non-linear relationships. However, they are devised for evaluating crisp (hard) partitions. In this paper, we generalize eight information theoretic crisp indices to soft clusterings, so that they can be used with partitions of any type (i.e., crisp or soft, with soft including fuzzy, probabilistic and possibilistic cases). We present experimental results to demonstrate the effectiveness of the generalized information theoretic indices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信