I. Ahn, Jihye Kim, W. H. Nam, Yongjin Chang, J. Ra
{"title":"基于lr的超分辨三维PET图像重建","authors":"I. Ahn, Jihye Kim, W. H. Nam, Yongjin Chang, J. Ra","doi":"10.1109/NSSMIC.2013.6829239","DOIUrl":null,"url":null,"abstract":"PET images usually suffer from low spatial resolution due to positron range, photon non-collinearity, scatters inside scintillating crystals, finite dimension of crystals, and so on. To improve the spatial resolution based on wobble scanning, we previously proposed a sinogram-based super-resolution (SR) algorithm based on a space-variant blur matrix. However, the algorithm may cause unwanted resolution loss due to an inevitable interpolation process for preparing even-spaced sinograms. In this paper, we propose a novel and efficient one-step line of response (LOR) based SR framework for 3D PET images. In the framework, we efficiently determine a large number of space-variant PSFs in an image space by using the scanner symmetries and the proposed PSF interpolation scheme based on non-rigid registration. We then obtain a HR image via one-step super-resolved 3D PET image reconstruction with the determined PSFs. Furthermore, we reduce the computational time of GPU-based reconstruction by introducing a parallel-friendly cone-beam based LOR system matrix. The proposed framework provides noticeable improvement on the spatial resolution of PET images with a considerable reduction of computational time.","PeriodicalId":246351,"journal":{"name":"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)","volume":"292 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"LOR-based reconstruction for super-resolved 3D PET image\",\"authors\":\"I. Ahn, Jihye Kim, W. H. Nam, Yongjin Chang, J. Ra\",\"doi\":\"10.1109/NSSMIC.2013.6829239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PET images usually suffer from low spatial resolution due to positron range, photon non-collinearity, scatters inside scintillating crystals, finite dimension of crystals, and so on. To improve the spatial resolution based on wobble scanning, we previously proposed a sinogram-based super-resolution (SR) algorithm based on a space-variant blur matrix. However, the algorithm may cause unwanted resolution loss due to an inevitable interpolation process for preparing even-spaced sinograms. In this paper, we propose a novel and efficient one-step line of response (LOR) based SR framework for 3D PET images. In the framework, we efficiently determine a large number of space-variant PSFs in an image space by using the scanner symmetries and the proposed PSF interpolation scheme based on non-rigid registration. We then obtain a HR image via one-step super-resolved 3D PET image reconstruction with the determined PSFs. Furthermore, we reduce the computational time of GPU-based reconstruction by introducing a parallel-friendly cone-beam based LOR system matrix. The proposed framework provides noticeable improvement on the spatial resolution of PET images with a considerable reduction of computational time.\",\"PeriodicalId\":246351,\"journal\":{\"name\":\"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)\",\"volume\":\"292 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2013.6829239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2013.6829239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LOR-based reconstruction for super-resolved 3D PET image
PET images usually suffer from low spatial resolution due to positron range, photon non-collinearity, scatters inside scintillating crystals, finite dimension of crystals, and so on. To improve the spatial resolution based on wobble scanning, we previously proposed a sinogram-based super-resolution (SR) algorithm based on a space-variant blur matrix. However, the algorithm may cause unwanted resolution loss due to an inevitable interpolation process for preparing even-spaced sinograms. In this paper, we propose a novel and efficient one-step line of response (LOR) based SR framework for 3D PET images. In the framework, we efficiently determine a large number of space-variant PSFs in an image space by using the scanner symmetries and the proposed PSF interpolation scheme based on non-rigid registration. We then obtain a HR image via one-step super-resolved 3D PET image reconstruction with the determined PSFs. Furthermore, we reduce the computational time of GPU-based reconstruction by introducing a parallel-friendly cone-beam based LOR system matrix. The proposed framework provides noticeable improvement on the spatial resolution of PET images with a considerable reduction of computational time.