F. Martinz, R. Destro, N. Ama, Kelly C. M. Carvalho, W. Komatsu, Lourenco Matakas Junior
{"title":"基于移动平均滤波器的快速动态响应锁相环的建模与设计","authors":"F. Martinz, R. Destro, N. Ama, Kelly C. M. Carvalho, W. Komatsu, Lourenco Matakas Junior","doi":"10.18618/rep.2020.1.0003","DOIUrl":null,"url":null,"abstract":"Phase Locked Loops (PLLs) with in-loop Moving Average Filter (MAF) and a Proportional Integral (PI) controller are effective methods to achieve synchronization in grid-connected converters, since they have simple implementation, low computational burden and excellent filtering capability. However, they are known to be slow. The reasons are the MAF time delay and the PI controller tuning method, which makes the design of a fast control loop challenging. This paper demonstrates that the second-order Padé approximation is enough to achieve an accurate model for the MAF, and presents a controller design technique that results in the minimum settling times achievable for a MAF-PLL with a PI controller. Simulation and experimental results validate the proposed approach. ","PeriodicalId":149812,"journal":{"name":"Eletrônica de Potência","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MODELING AND DESIGN OF A FAST-DYNAMIC RESPONSE PHASE-LOCKED LOOP BASED ON MOVING AVERAGE FILTER\",\"authors\":\"F. Martinz, R. Destro, N. Ama, Kelly C. M. Carvalho, W. Komatsu, Lourenco Matakas Junior\",\"doi\":\"10.18618/rep.2020.1.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase Locked Loops (PLLs) with in-loop Moving Average Filter (MAF) and a Proportional Integral (PI) controller are effective methods to achieve synchronization in grid-connected converters, since they have simple implementation, low computational burden and excellent filtering capability. However, they are known to be slow. The reasons are the MAF time delay and the PI controller tuning method, which makes the design of a fast control loop challenging. This paper demonstrates that the second-order Padé approximation is enough to achieve an accurate model for the MAF, and presents a controller design technique that results in the minimum settling times achievable for a MAF-PLL with a PI controller. Simulation and experimental results validate the proposed approach. \",\"PeriodicalId\":149812,\"journal\":{\"name\":\"Eletrônica de Potência\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eletrônica de Potência\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18618/rep.2020.1.0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eletrônica de Potência","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18618/rep.2020.1.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MODELING AND DESIGN OF A FAST-DYNAMIC RESPONSE PHASE-LOCKED LOOP BASED ON MOVING AVERAGE FILTER
Phase Locked Loops (PLLs) with in-loop Moving Average Filter (MAF) and a Proportional Integral (PI) controller are effective methods to achieve synchronization in grid-connected converters, since they have simple implementation, low computational burden and excellent filtering capability. However, they are known to be slow. The reasons are the MAF time delay and the PI controller tuning method, which makes the design of a fast control loop challenging. This paper demonstrates that the second-order Padé approximation is enough to achieve an accurate model for the MAF, and presents a controller design technique that results in the minimum settling times achievable for a MAF-PLL with a PI controller. Simulation and experimental results validate the proposed approach.