半代数曲线的细分排列算法综述

Julien Wintz, B. Mourrain
{"title":"半代数曲线的细分排列算法综述","authors":"Julien Wintz, B. Mourrain","doi":"10.1109/PG.2007.18","DOIUrl":null,"url":null,"abstract":"We overview a new method for computing the arrangement of semi-algebraic curves. A subdivision approach is used to compute the topology of the algebraic objects and to segment the boundary of regions defined by these objects. An efficient insertion technique is described, which detects regions in conflict and updates the underlying arrangement structure. We describe the general framework of this method, the main region insertion operation and the specializations of the key ingredients for the different types of objects: implicit, parametric or piecewise linear curves.","PeriodicalId":376934,"journal":{"name":"15th Pacific Conference on Computer Graphics and Applications (PG'07)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Subdivision Arrangement Algorithm for Semi-Algebraic Curves: An Overview\",\"authors\":\"Julien Wintz, B. Mourrain\",\"doi\":\"10.1109/PG.2007.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We overview a new method for computing the arrangement of semi-algebraic curves. A subdivision approach is used to compute the topology of the algebraic objects and to segment the boundary of regions defined by these objects. An efficient insertion technique is described, which detects regions in conflict and updates the underlying arrangement structure. We describe the general framework of this method, the main region insertion operation and the specializations of the key ingredients for the different types of objects: implicit, parametric or piecewise linear curves.\",\"PeriodicalId\":376934,\"journal\":{\"name\":\"15th Pacific Conference on Computer Graphics and Applications (PG'07)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th Pacific Conference on Computer Graphics and Applications (PG'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PG.2007.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th Pacific Conference on Computer Graphics and Applications (PG'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PG.2007.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文概述了一种计算半代数曲线排列的新方法。采用细分方法计算代数对象的拓扑结构,并对这些对象所定义的区域边界进行分割。描述了一种有效的插入技术,该技术检测冲突区域并更新底层排列结构。我们描述了该方法的总体框架,主要区域插入操作和不同类型对象的关键成分的专门化:隐式,参数化或分段线性曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Subdivision Arrangement Algorithm for Semi-Algebraic Curves: An Overview
We overview a new method for computing the arrangement of semi-algebraic curves. A subdivision approach is used to compute the topology of the algebraic objects and to segment the boundary of regions defined by these objects. An efficient insertion technique is described, which detects regions in conflict and updates the underlying arrangement structure. We describe the general framework of this method, the main region insertion operation and the specializations of the key ingredients for the different types of objects: implicit, parametric or piecewise linear curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信