等聚类:局部数据聚类的一种通用框架

David Haley, Ehsan Kamalinejad, Jiaofei Zhong
{"title":"等聚类:局部数据聚类的一种通用框架","authors":"David Haley, Ehsan Kamalinejad, Jiaofei Zhong","doi":"10.1109/ICMLA.2019.00058","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a generalized framework for local clustering based on isoperimetric inequalities. We also demonstrate that contemporary approaches are included in its scope and that it can accommodate data sets of different types, including those with overlapping communities. We then present an efficient, greedy algorithm using the new framework and compare the output of the new algorithm with existing methods.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IsoClustering: A Generalized Framework for Local Data Clustering\",\"authors\":\"David Haley, Ehsan Kamalinejad, Jiaofei Zhong\",\"doi\":\"10.1109/ICMLA.2019.00058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a generalized framework for local clustering based on isoperimetric inequalities. We also demonstrate that contemporary approaches are included in its scope and that it can accommodate data sets of different types, including those with overlapping communities. We then present an efficient, greedy algorithm using the new framework and compare the output of the new algorithm with existing methods.\",\"PeriodicalId\":436714,\"journal\":{\"name\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2019.00058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于等周不等式的广义局部聚类框架。我们还证明,当代方法包括在其范围内,它可以容纳不同类型的数据集,包括那些重叠的社区。然后,我们使用新框架提出了一个高效的贪婪算法,并将新算法的输出与现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IsoClustering: A Generalized Framework for Local Data Clustering
In this paper, we propose a generalized framework for local clustering based on isoperimetric inequalities. We also demonstrate that contemporary approaches are included in its scope and that it can accommodate data sets of different types, including those with overlapping communities. We then present an efficient, greedy algorithm using the new framework and compare the output of the new algorithm with existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信