V. Leplat, Y. Nesterov, Nicolas Gillis, F. Glineur
{"title":"基于二次优化的非负矩阵分解算法","authors":"V. Leplat, Y. Nesterov, Nicolas Gillis, F. Glineur","doi":"10.1080/10556788.2023.2189714","DOIUrl":null,"url":null,"abstract":"Nonnegative matrix factorization is the following problem: given a nonnegative input matrix V and a factorization rank K, compute two nonnegative matrices, W with K columns and H with K rows, such that WH approximates V as well as possible. In this paper, we propose two new approaches for computing high-quality NMF solutions using conic optimization. These approaches rely on the same two steps. First, we reformulate NMF as minimizing a concave function over a product of convex cones – one approach is based on the exponential cone and the other on the second-order cone. Then, we solve these reformulations iteratively: at each step, we minimize exactly, over the feasible set, a majorization of the objective functions obtained via linearization at the current iterate. Hence these subproblems are convex conic programs and can be solved efficiently using dedicated algorithms. We prove that our approaches reach a stationary point with an accuracy decreasing as , where i denotes the iteration number. To the best of our knowledge, our analysis is the first to provide a convergence rate to stationary points for NMF. Furthermore, in the particular cases of rank-1 factorizations (i.e. K = 1), we show that one of our formulations can be expressed as a convex optimization problem, implying that optimal rank-1 approximations can be computed efficiently. Finally, we show on several numerical examples that our approaches are able to frequently compute exact NMFs (i.e. with V = WH) and compete favourably with the state of the art.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conic optimization-based algorithms for nonnegative matrix factorization\",\"authors\":\"V. Leplat, Y. Nesterov, Nicolas Gillis, F. Glineur\",\"doi\":\"10.1080/10556788.2023.2189714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonnegative matrix factorization is the following problem: given a nonnegative input matrix V and a factorization rank K, compute two nonnegative matrices, W with K columns and H with K rows, such that WH approximates V as well as possible. In this paper, we propose two new approaches for computing high-quality NMF solutions using conic optimization. These approaches rely on the same two steps. First, we reformulate NMF as minimizing a concave function over a product of convex cones – one approach is based on the exponential cone and the other on the second-order cone. Then, we solve these reformulations iteratively: at each step, we minimize exactly, over the feasible set, a majorization of the objective functions obtained via linearization at the current iterate. Hence these subproblems are convex conic programs and can be solved efficiently using dedicated algorithms. We prove that our approaches reach a stationary point with an accuracy decreasing as , where i denotes the iteration number. To the best of our knowledge, our analysis is the first to provide a convergence rate to stationary points for NMF. Furthermore, in the particular cases of rank-1 factorizations (i.e. K = 1), we show that one of our formulations can be expressed as a convex optimization problem, implying that optimal rank-1 approximations can be computed efficiently. Finally, we show on several numerical examples that our approaches are able to frequently compute exact NMFs (i.e. with V = WH) and compete favourably with the state of the art.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2023.2189714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2023.2189714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conic optimization-based algorithms for nonnegative matrix factorization
Nonnegative matrix factorization is the following problem: given a nonnegative input matrix V and a factorization rank K, compute two nonnegative matrices, W with K columns and H with K rows, such that WH approximates V as well as possible. In this paper, we propose two new approaches for computing high-quality NMF solutions using conic optimization. These approaches rely on the same two steps. First, we reformulate NMF as minimizing a concave function over a product of convex cones – one approach is based on the exponential cone and the other on the second-order cone. Then, we solve these reformulations iteratively: at each step, we minimize exactly, over the feasible set, a majorization of the objective functions obtained via linearization at the current iterate. Hence these subproblems are convex conic programs and can be solved efficiently using dedicated algorithms. We prove that our approaches reach a stationary point with an accuracy decreasing as , where i denotes the iteration number. To the best of our knowledge, our analysis is the first to provide a convergence rate to stationary points for NMF. Furthermore, in the particular cases of rank-1 factorizations (i.e. K = 1), we show that one of our formulations can be expressed as a convex optimization problem, implying that optimal rank-1 approximations can be computed efficiently. Finally, we show on several numerical examples that our approaches are able to frequently compute exact NMFs (i.e. with V = WH) and compete favourably with the state of the art.