{"title":"基于智能手机的养老交通方式检测","authors":"N. Cardoso, João Madureira, N. Pereira","doi":"10.1109/HealthCom.2016.7749465","DOIUrl":null,"url":null,"abstract":"Smartphones are everywhere, and they are a very attractive platform to perform unobtrusive monitoring of users. In this work, we use common features of modern smartphones to build a human activity recognition (HAR) system for elderly care. We have built a classifier that detects the transport mode of the user including whether an individual is inactive, walking, in bus, in car, in train or in metro. We evaluated our approach using over 24 hours of transportation data from a group of 15 individuals. Our tests show that our classifier can detect the transportation mode with over 90% accuracy.","PeriodicalId":167022,"journal":{"name":"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Smartphone-based transport mode detection for elderly care\",\"authors\":\"N. Cardoso, João Madureira, N. Pereira\",\"doi\":\"10.1109/HealthCom.2016.7749465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smartphones are everywhere, and they are a very attractive platform to perform unobtrusive monitoring of users. In this work, we use common features of modern smartphones to build a human activity recognition (HAR) system for elderly care. We have built a classifier that detects the transport mode of the user including whether an individual is inactive, walking, in bus, in car, in train or in metro. We evaluated our approach using over 24 hours of transportation data from a group of 15 individuals. Our tests show that our classifier can detect the transportation mode with over 90% accuracy.\",\"PeriodicalId\":167022,\"journal\":{\"name\":\"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HealthCom.2016.7749465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HealthCom.2016.7749465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Smartphone-based transport mode detection for elderly care
Smartphones are everywhere, and they are a very attractive platform to perform unobtrusive monitoring of users. In this work, we use common features of modern smartphones to build a human activity recognition (HAR) system for elderly care. We have built a classifier that detects the transport mode of the user including whether an individual is inactive, walking, in bus, in car, in train or in metro. We evaluated our approach using over 24 hours of transportation data from a group of 15 individuals. Our tests show that our classifier can detect the transportation mode with over 90% accuracy.