初等算子与新c -代数

S. Mécheri, Abdelatif Toulabia
{"title":"初等算子与新c -代数","authors":"S. Mécheri, Abdelatif Toulabia","doi":"10.12816/0007250","DOIUrl":null,"url":null,"abstract":"Let H be a complex Hilbert space and B(H) the algebra of all bounded linear operators on H. In this paper, we study the class of pairs of operators A;B 2 B(H) that have the following property, ATB = T implies B TA = T for all T 2 C1(H) (trace class operators). The main result is the equivalence between this character and the fact that the ultra-weak closure of the range of the elementary operator A;B dened on B(H) by A;B(X) = AXB X is equivalent to the generalized quasiadjoint operators. Some new C -algebras generated by a pair of operators A;B2 B(H) are also presented.","PeriodicalId":210748,"journal":{"name":"International Journal of Open Problems in Computer Science and Mathematics","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ELEMENTARY OPERATORS AND NEW C -ALGEBRAS\",\"authors\":\"S. Mécheri, Abdelatif Toulabia\",\"doi\":\"10.12816/0007250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let H be a complex Hilbert space and B(H) the algebra of all bounded linear operators on H. In this paper, we study the class of pairs of operators A;B 2 B(H) that have the following property, ATB = T implies B TA = T for all T 2 C1(H) (trace class operators). The main result is the equivalence between this character and the fact that the ultra-weak closure of the range of the elementary operator A;B dened on B(H) by A;B(X) = AXB X is equivalent to the generalized quasiadjoint operators. Some new C -algebras generated by a pair of operators A;B2 B(H) are also presented.\",\"PeriodicalId\":210748,\"journal\":{\"name\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12816/0007250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Problems in Computer Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12816/0007250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设H为复希尔伯特空间,B(H)为H上所有有界线性算子的代数。本文研究了一类算子对a; b2;B (H)具有如下性质:ATB = T意味着B TA = T对所有t2 C1(H)(迹类算子)。主要结果是这一特征与A;B在B(H)上由A;B(X) = AXB的值域的超弱闭包等价于广义拟伴随算子这一事实之间的等价性。给出了由一对算子a;B2;B (H)生成的一些新的C -代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ELEMENTARY OPERATORS AND NEW C -ALGEBRAS
Let H be a complex Hilbert space and B(H) the algebra of all bounded linear operators on H. In this paper, we study the class of pairs of operators A;B 2 B(H) that have the following property, ATB = T implies B TA = T for all T 2 C1(H) (trace class operators). The main result is the equivalence between this character and the fact that the ultra-weak closure of the range of the elementary operator A;B dened on B(H) by A;B(X) = AXB X is equivalent to the generalized quasiadjoint operators. Some new C -algebras generated by a pair of operators A;B2 B(H) are also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信