K. Aoyama, Shinji Watanabe, H. Sawada, Yasuhiro Minami, N. Ueda, Kazumi Saito
{"title":"基于邻域图索引的大型语音数据集快速相似度搜索","authors":"K. Aoyama, Shinji Watanabe, H. Sawada, Yasuhiro Minami, N. Ueda, Kazumi Saito","doi":"10.1109/ICASSP.2010.5494950","DOIUrl":null,"url":null,"abstract":"This paper presents a novel graph-based approach for solving a problem of fast finding a speech model acoustically similar to a query model from a large set of speech models. Each speech model in the set is represented by a Gaussian mixture model and dissimilarity from a GMM to another is measured with a Kullback-Leibler divergence (KLD). Conventional pruning techniques based on the triangle inequality for fast similarity search are not available because the model space with a KLD is not a metric space. We propose a search method that is characterized by an index of a degree-reduced nearest neighbor (DRNN) graph. The search method can efficiently find the most similar (closest) GMM to a query, exploring the DRNN graph with a best-first manner. Experimental evaluations on utterance GMM search tasks reveal a significantly low computational cost of the proposed method.","PeriodicalId":293333,"journal":{"name":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fast similarity search on a large speech data set with neighborhood graph indexing\",\"authors\":\"K. Aoyama, Shinji Watanabe, H. Sawada, Yasuhiro Minami, N. Ueda, Kazumi Saito\",\"doi\":\"10.1109/ICASSP.2010.5494950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel graph-based approach for solving a problem of fast finding a speech model acoustically similar to a query model from a large set of speech models. Each speech model in the set is represented by a Gaussian mixture model and dissimilarity from a GMM to another is measured with a Kullback-Leibler divergence (KLD). Conventional pruning techniques based on the triangle inequality for fast similarity search are not available because the model space with a KLD is not a metric space. We propose a search method that is characterized by an index of a degree-reduced nearest neighbor (DRNN) graph. The search method can efficiently find the most similar (closest) GMM to a query, exploring the DRNN graph with a best-first manner. Experimental evaluations on utterance GMM search tasks reveal a significantly low computational cost of the proposed method.\",\"PeriodicalId\":293333,\"journal\":{\"name\":\"2010 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2010.5494950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2010.5494950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast similarity search on a large speech data set with neighborhood graph indexing
This paper presents a novel graph-based approach for solving a problem of fast finding a speech model acoustically similar to a query model from a large set of speech models. Each speech model in the set is represented by a Gaussian mixture model and dissimilarity from a GMM to another is measured with a Kullback-Leibler divergence (KLD). Conventional pruning techniques based on the triangle inequality for fast similarity search are not available because the model space with a KLD is not a metric space. We propose a search method that is characterized by an index of a degree-reduced nearest neighbor (DRNN) graph. The search method can efficiently find the most similar (closest) GMM to a query, exploring the DRNN graph with a best-first manner. Experimental evaluations on utterance GMM search tasks reveal a significantly low computational cost of the proposed method.