使用深度生成网络的高维通道压缩表示

Akash S. Doshi, Eren Balevi, J. Andrews
{"title":"使用深度生成网络的高维通道压缩表示","authors":"Akash S. Doshi, Eren Balevi, J. Andrews","doi":"10.1109/spawc48557.2020.9154297","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel compressed representation for high dimensional channel matrices obtained by optimization of the input to a deep generative network. Channel estimation using generative networks constrains the reconstructed channel to lie in the range of the generative model, which allows it to outperform conventional channel estimation techniques in the presence of limited number of pilots. It also eliminates the need for explicit knowledge of the sparsifying basis for mmWave multiple-input multiple-output (MIMO) channel matrices, such as the DFT basis, and the associated compressed sensing based strategies for optimal choice of training precoders and combiners. Our approach significantly outperforms sparse signal recovery methods that employ Basis Pursuit Denoising(BPDN) algorithms for narrowband mmWave channel reconstruction.","PeriodicalId":172835,"journal":{"name":"2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Compressed Representation of High Dimensional Channels using Deep Generative Networks\",\"authors\":\"Akash S. Doshi, Eren Balevi, J. Andrews\",\"doi\":\"10.1109/spawc48557.2020.9154297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel compressed representation for high dimensional channel matrices obtained by optimization of the input to a deep generative network. Channel estimation using generative networks constrains the reconstructed channel to lie in the range of the generative model, which allows it to outperform conventional channel estimation techniques in the presence of limited number of pilots. It also eliminates the need for explicit knowledge of the sparsifying basis for mmWave multiple-input multiple-output (MIMO) channel matrices, such as the DFT basis, and the associated compressed sensing based strategies for optimal choice of training precoders and combiners. Our approach significantly outperforms sparse signal recovery methods that employ Basis Pursuit Denoising(BPDN) algorithms for narrowband mmWave channel reconstruction.\",\"PeriodicalId\":172835,\"journal\":{\"name\":\"2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/spawc48557.2020.9154297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spawc48557.2020.9154297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种新的高维通道矩阵的压缩表示方法,该方法是通过对深度生成网络的输入进行优化得到的。使用生成网络的信道估计将重构的信道限制在生成模型的范围内,这使得它在有限导频的情况下优于传统的信道估计技术。它还消除了对毫米波多输入多输出(MIMO)信道矩阵的稀疏化基础(如DFT基)的明确知识的需要,以及用于最佳选择训练预编码器和组合器的相关压缩感知策略。我们的方法在窄带毫米波信道重建中显著优于采用基跟踪去噪(BPDN)算法的稀疏信号恢复方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressed Representation of High Dimensional Channels using Deep Generative Networks
This paper proposes a novel compressed representation for high dimensional channel matrices obtained by optimization of the input to a deep generative network. Channel estimation using generative networks constrains the reconstructed channel to lie in the range of the generative model, which allows it to outperform conventional channel estimation techniques in the presence of limited number of pilots. It also eliminates the need for explicit knowledge of the sparsifying basis for mmWave multiple-input multiple-output (MIMO) channel matrices, such as the DFT basis, and the associated compressed sensing based strategies for optimal choice of training precoders and combiners. Our approach significantly outperforms sparse signal recovery methods that employ Basis Pursuit Denoising(BPDN) algorithms for narrowband mmWave channel reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信