求解时间分数阶KDV、K(2,2)和Burgers方程的分数阶同伦摄动变换方法

D. Ziane, K. Belghaba, M. Cherif
{"title":"求解时间分数阶KDV、K(2,2)和Burgers方程的分数阶同伦摄动变换方法","authors":"D. Ziane, K. Belghaba, M. Cherif","doi":"10.12816/0017358","DOIUrl":null,"url":null,"abstract":"In this paper, the fractional homotopy perturbation transform method (FHPTM) is employed to obtain approximate analytical solutions of the time-fractional KdV, K(2,2) and Burgers equations. The FHPTM can easily be applied to many problems and is capable of reducing the size of computational work. The fractional derivative is described in the Caputo sense. The results show that the FHPTM is an appropriate method for solving nonlinear fractional derivative equation.","PeriodicalId":210748,"journal":{"name":"International Journal of Open Problems in Computer Science and Mathematics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fractional Homotopy Perturbation Transform Method for Solving the Time-Fractional KDV , K ( 2 , 2 ) and Burgers Equations\",\"authors\":\"D. Ziane, K. Belghaba, M. Cherif\",\"doi\":\"10.12816/0017358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the fractional homotopy perturbation transform method (FHPTM) is employed to obtain approximate analytical solutions of the time-fractional KdV, K(2,2) and Burgers equations. The FHPTM can easily be applied to many problems and is capable of reducing the size of computational work. The fractional derivative is described in the Caputo sense. The results show that the FHPTM is an appropriate method for solving nonlinear fractional derivative equation.\",\"PeriodicalId\":210748,\"journal\":{\"name\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12816/0017358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Problems in Computer Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12816/0017358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文利用分数阶同伦摄动变换方法(FHPTM)得到了时间分数阶KdV、K(2,2)和Burgers方程的近似解析解。FHPTM可以很容易地应用于许多问题,并且能够减少计算量。分数阶导数是用卡普托意义来描述的。结果表明,FHPTM是求解非线性分数阶导数方程的一种合适方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Homotopy Perturbation Transform Method for Solving the Time-Fractional KDV , K ( 2 , 2 ) and Burgers Equations
In this paper, the fractional homotopy perturbation transform method (FHPTM) is employed to obtain approximate analytical solutions of the time-fractional KdV, K(2,2) and Burgers equations. The FHPTM can easily be applied to many problems and is capable of reducing the size of computational work. The fractional derivative is described in the Caputo sense. The results show that the FHPTM is an appropriate method for solving nonlinear fractional derivative equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信