{"title":"求解时间分数阶KDV、K(2,2)和Burgers方程的分数阶同伦摄动变换方法","authors":"D. Ziane, K. Belghaba, M. Cherif","doi":"10.12816/0017358","DOIUrl":null,"url":null,"abstract":"In this paper, the fractional homotopy perturbation transform method (FHPTM) is employed to obtain approximate analytical solutions of the time-fractional KdV, K(2,2) and Burgers equations. The FHPTM can easily be applied to many problems and is capable of reducing the size of computational work. The fractional derivative is described in the Caputo sense. The results show that the FHPTM is an appropriate method for solving nonlinear fractional derivative equation.","PeriodicalId":210748,"journal":{"name":"International Journal of Open Problems in Computer Science and Mathematics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fractional Homotopy Perturbation Transform Method for Solving the Time-Fractional KDV , K ( 2 , 2 ) and Burgers Equations\",\"authors\":\"D. Ziane, K. Belghaba, M. Cherif\",\"doi\":\"10.12816/0017358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the fractional homotopy perturbation transform method (FHPTM) is employed to obtain approximate analytical solutions of the time-fractional KdV, K(2,2) and Burgers equations. The FHPTM can easily be applied to many problems and is capable of reducing the size of computational work. The fractional derivative is described in the Caputo sense. The results show that the FHPTM is an appropriate method for solving nonlinear fractional derivative equation.\",\"PeriodicalId\":210748,\"journal\":{\"name\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12816/0017358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Problems in Computer Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12816/0017358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fractional Homotopy Perturbation Transform Method for Solving the Time-Fractional KDV , K ( 2 , 2 ) and Burgers Equations
In this paper, the fractional homotopy perturbation transform method (FHPTM) is employed to obtain approximate analytical solutions of the time-fractional KdV, K(2,2) and Burgers equations. The FHPTM can easily be applied to many problems and is capable of reducing the size of computational work. The fractional derivative is described in the Caputo sense. The results show that the FHPTM is an appropriate method for solving nonlinear fractional derivative equation.