{"title":"弱单调系数分数阶矩阵解的存在唯一性","authors":"Mostapha Abdelouahab Saouli","doi":"10.37418/amsj.11.12.12","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the fractional backward stochastic differential equations (F-BSDEs in short) with Hurst parameter $H\\in (\\frac{1}{2},1)$ when the driver $g$ is weak monotone. Via an approximation theory, we derive the existence and uniqueness of solutions to F-BSDEs. The comparison theorem is also established.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"225 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FRACTIONAL BSDES WITH WEAK MONOTONICITY COEFFICIENTS\",\"authors\":\"Mostapha Abdelouahab Saouli\",\"doi\":\"10.37418/amsj.11.12.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we deal with the fractional backward stochastic differential equations (F-BSDEs in short) with Hurst parameter $H\\\\in (\\\\frac{1}{2},1)$ when the driver $g$ is weak monotone. Via an approximation theory, we derive the existence and uniqueness of solutions to F-BSDEs. The comparison theorem is also established.\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"225 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.11.12.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.11.12.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了一类具有赫斯特参数$H\ In (\frac{1}{2},1)$的分数阶倒向随机微分方程(简称F-BSDEs),当驱动器$g$为弱单调时。利用近似理论,我们得到了F-BSDEs解的存在唯一性。并建立了比较定理。
EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FRACTIONAL BSDES WITH WEAK MONOTONICITY COEFFICIENTS
In this paper, we deal with the fractional backward stochastic differential equations (F-BSDEs in short) with Hurst parameter $H\in (\frac{1}{2},1)$ when the driver $g$ is weak monotone. Via an approximation theory, we derive the existence and uniqueness of solutions to F-BSDEs. The comparison theorem is also established.