超高效三相逆变器的多级拓扑评估

J. A. Anderson, L. Schrittwieser, M. Leibl, J. Kolar
{"title":"超高效三相逆变器的多级拓扑评估","authors":"J. A. Anderson, L. Schrittwieser, M. Leibl, J. Kolar","doi":"10.1109/INTLEC.2017.8214178","DOIUrl":null,"url":null,"abstract":"Multi-level topologies reduce the requirements on inductors and filters, however, given the high number of series connected semiconductors, it is still unclear if they are a suitable option to achieve ultra-high efficiency while maintaining a reasonable power density. For this purpose, an extensive quantitative evaluation of different topologies is carried out, to determine the required volume for a targeted 99.5% efficiency of a 10kW three-phase inverter. This includes the EMI noise filtering, where the Common Mode filter is placed on the DC-side to save losses and the impact of the upcoming EMI regulations covering the range from 2 kHz to 150 kHz is discussed. With an evaluation of multilevel topologies, it is shown that even if a high number of levels can reduce the size of the magnetic components by an order of magnitude, the volume and losses of the capacitive components required to create the multi-level voltage output have to be considered. An evaluation is done to quantify the performance of topologies ranging from two-level to seven-level topologies, and detailed designs of the three-level T-type and seven-level Hybrid Active Neutral Point Clamped converters are presented, achieving a relatively high power density of 2.2 kW/dm3 and 2.7 kW/dm3 respectively.","PeriodicalId":366207,"journal":{"name":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Multi-level topology evaluation for ultra-efficient three-phase inverters\",\"authors\":\"J. A. Anderson, L. Schrittwieser, M. Leibl, J. Kolar\",\"doi\":\"10.1109/INTLEC.2017.8214178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-level topologies reduce the requirements on inductors and filters, however, given the high number of series connected semiconductors, it is still unclear if they are a suitable option to achieve ultra-high efficiency while maintaining a reasonable power density. For this purpose, an extensive quantitative evaluation of different topologies is carried out, to determine the required volume for a targeted 99.5% efficiency of a 10kW three-phase inverter. This includes the EMI noise filtering, where the Common Mode filter is placed on the DC-side to save losses and the impact of the upcoming EMI regulations covering the range from 2 kHz to 150 kHz is discussed. With an evaluation of multilevel topologies, it is shown that even if a high number of levels can reduce the size of the magnetic components by an order of magnitude, the volume and losses of the capacitive components required to create the multi-level voltage output have to be considered. An evaluation is done to quantify the performance of topologies ranging from two-level to seven-level topologies, and detailed designs of the three-level T-type and seven-level Hybrid Active Neutral Point Clamped converters are presented, achieving a relatively high power density of 2.2 kW/dm3 and 2.7 kW/dm3 respectively.\",\"PeriodicalId\":366207,\"journal\":{\"name\":\"2017 IEEE International Telecommunications Energy Conference (INTELEC)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Telecommunications Energy Conference (INTELEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTLEC.2017.8214178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTLEC.2017.8214178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

多级拓扑结构降低了对电感和滤波器的要求,然而,考虑到大量串联连接的半导体,它们是否是在保持合理功率密度的同时实现超高效率的合适选择仍不清楚。为此,对不同的拓扑结构进行了广泛的定量评估,以确定10kW三相逆变器99.5%效率目标所需的体积。这包括EMI噪声滤波,其中共模滤波器放置在直流侧以节省损耗,并讨论了即将出台的涵盖2 kHz至150 kHz范围的EMI法规的影响。通过对多电平拓扑的评估,表明即使高电平可以将磁性元件的尺寸减小一个数量级,也必须考虑创建多级电压输出所需的容性元件的体积和损耗。对两电平到七电平拓扑结构的性能进行了量化评估,并给出了三电平t型和七电平混合有源中性点箝位转换器的详细设计,分别实现了2.2 kW/dm3和2.7 kW/dm3的相对较高的功率密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-level topology evaluation for ultra-efficient three-phase inverters
Multi-level topologies reduce the requirements on inductors and filters, however, given the high number of series connected semiconductors, it is still unclear if they are a suitable option to achieve ultra-high efficiency while maintaining a reasonable power density. For this purpose, an extensive quantitative evaluation of different topologies is carried out, to determine the required volume for a targeted 99.5% efficiency of a 10kW three-phase inverter. This includes the EMI noise filtering, where the Common Mode filter is placed on the DC-side to save losses and the impact of the upcoming EMI regulations covering the range from 2 kHz to 150 kHz is discussed. With an evaluation of multilevel topologies, it is shown that even if a high number of levels can reduce the size of the magnetic components by an order of magnitude, the volume and losses of the capacitive components required to create the multi-level voltage output have to be considered. An evaluation is done to quantify the performance of topologies ranging from two-level to seven-level topologies, and detailed designs of the three-level T-type and seven-level Hybrid Active Neutral Point Clamped converters are presented, achieving a relatively high power density of 2.2 kW/dm3 and 2.7 kW/dm3 respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信