基于无监督卷积神经网络的SENTINEL-2图像20m波段锐化

H. Nguyen, M. Ulfarsson, J. R. Sveinsson
{"title":"基于无监督卷积神经网络的SENTINEL-2图像20m波段锐化","authors":"H. Nguyen, M. Ulfarsson, J. R. Sveinsson","doi":"10.1109/IGARSS47720.2021.9555082","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method for sharpening the 20 m bands of the multispectral images acquired by the Sentinel-2 (S2) constellation. We formulate the S2 sharpening as an inverse problem and solve it using an unsupervised convolutional neural network (CNN), called S2UCNN. The proposed method extends the deep image prior provided by a CNN structure with S2 domain knowledge. We incorporate a modulation transfer function-based degradation model as a network layer. We add the 10 m bands to both the network input and output to take advantage of the multitask learning. Experimental results with a real S2 dataset show that the proposed method outperforms the competitive methods on reduced-resolution data and gives very high quality sharpened image on full-resolution data.","PeriodicalId":315312,"journal":{"name":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sharpening the 20 M Bands of SENTINEL-2 Image Using an Unsupervised Convolutional Neural Network\",\"authors\":\"H. Nguyen, M. Ulfarsson, J. R. Sveinsson\",\"doi\":\"10.1109/IGARSS47720.2021.9555082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel method for sharpening the 20 m bands of the multispectral images acquired by the Sentinel-2 (S2) constellation. We formulate the S2 sharpening as an inverse problem and solve it using an unsupervised convolutional neural network (CNN), called S2UCNN. The proposed method extends the deep image prior provided by a CNN structure with S2 domain knowledge. We incorporate a modulation transfer function-based degradation model as a network layer. We add the 10 m bands to both the network input and output to take advantage of the multitask learning. Experimental results with a real S2 dataset show that the proposed method outperforms the competitive methods on reduced-resolution data and gives very high quality sharpened image on full-resolution data.\",\"PeriodicalId\":315312,\"journal\":{\"name\":\"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS47720.2021.9555082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS47720.2021.9555082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种对Sentinel-2 (S2)星座采集的多光谱图像进行20 m波段锐化的新方法。我们将S2锐化表述为一个逆问题,并使用称为S2UCNN的无监督卷积神经网络(CNN)来解决它。该方法利用S2域知识对CNN结构提供的深度图像先验进行扩展。我们将一个基于调制传递函数的退化模型作为网络层。为了利用多任务学习的优势,我们在网络输入和输出中都添加了10 m波段。在一个真实的S2数据集上的实验结果表明,该方法在低分辨率数据上优于竞争方法,在全分辨率数据上得到了非常高质量的锐化图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharpening the 20 M Bands of SENTINEL-2 Image Using an Unsupervised Convolutional Neural Network
This paper proposes a novel method for sharpening the 20 m bands of the multispectral images acquired by the Sentinel-2 (S2) constellation. We formulate the S2 sharpening as an inverse problem and solve it using an unsupervised convolutional neural network (CNN), called S2UCNN. The proposed method extends the deep image prior provided by a CNN structure with S2 domain knowledge. We incorporate a modulation transfer function-based degradation model as a network layer. We add the 10 m bands to both the network input and output to take advantage of the multitask learning. Experimental results with a real S2 dataset show that the proposed method outperforms the competitive methods on reduced-resolution data and gives very high quality sharpened image on full-resolution data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信