Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg, Sailesh Mittal, J. Patel, K. Ramasamy, Siddarth Taneja
{"title":"Twitter Heron:大规模的流处理","authors":"Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg, Sailesh Mittal, J. Patel, K. Ramasamy, Siddarth Taneja","doi":"10.1145/2723372.2742788","DOIUrl":null,"url":null,"abstract":"Storm has long served as the main platform for real-time analytics at Twitter. However, as the scale of data being processed in real-time at Twitter has increased, along with an increase in the diversity and the number of use cases, many limitations of Storm have become apparent. We need a system that scales better, has better debug-ability, has better performance, and is easier to manage -- all while working in a shared cluster infrastructure. We considered various alternatives to meet these needs, and in the end concluded that we needed to build a new real-time stream data processing system. This paper presents the design and implementation of this new system, called Heron. Heron is now the de facto stream data processing engine inside Twitter, and in this paper we also share our experiences from running Heron in production. In this paper, we also provide empirical evidence demonstrating the efficiency and scalability of Heron.","PeriodicalId":168391,"journal":{"name":"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data","volume":"206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"576","resultStr":"{\"title\":\"Twitter Heron: Stream Processing at Scale\",\"authors\":\"Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg, Sailesh Mittal, J. Patel, K. Ramasamy, Siddarth Taneja\",\"doi\":\"10.1145/2723372.2742788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Storm has long served as the main platform for real-time analytics at Twitter. However, as the scale of data being processed in real-time at Twitter has increased, along with an increase in the diversity and the number of use cases, many limitations of Storm have become apparent. We need a system that scales better, has better debug-ability, has better performance, and is easier to manage -- all while working in a shared cluster infrastructure. We considered various alternatives to meet these needs, and in the end concluded that we needed to build a new real-time stream data processing system. This paper presents the design and implementation of this new system, called Heron. Heron is now the de facto stream data processing engine inside Twitter, and in this paper we also share our experiences from running Heron in production. In this paper, we also provide empirical evidence demonstrating the efficiency and scalability of Heron.\",\"PeriodicalId\":168391,\"journal\":{\"name\":\"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data\",\"volume\":\"206 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"576\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2723372.2742788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2723372.2742788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Storm has long served as the main platform for real-time analytics at Twitter. However, as the scale of data being processed in real-time at Twitter has increased, along with an increase in the diversity and the number of use cases, many limitations of Storm have become apparent. We need a system that scales better, has better debug-ability, has better performance, and is easier to manage -- all while working in a shared cluster infrastructure. We considered various alternatives to meet these needs, and in the end concluded that we needed to build a new real-time stream data processing system. This paper presents the design and implementation of this new system, called Heron. Heron is now the de facto stream data processing engine inside Twitter, and in this paper we also share our experiences from running Heron in production. In this paper, we also provide empirical evidence demonstrating the efficiency and scalability of Heron.