可能使用进化c回归聚类进行能源消耗概况分类

D. Dovžan, I. Škrjanc
{"title":"可能使用进化c回归聚类进行能源消耗概况分类","authors":"D. Dovžan, I. Škrjanc","doi":"10.1109/EAIS.2015.7368792","DOIUrl":null,"url":null,"abstract":"In this paper an idea for classification of energy consumption profiles using an evolving c-regression method is presented. Cluster prototypes (centers) are usually defined as a mean of data around the center. The cluster center is a vector of numerical values. The method presented in this paper uses Takagi-Sugeno fuzzy models as a cluster prototype. Beside the method description also preliminary results of energy consumption profiles classification are given.","PeriodicalId":325875,"journal":{"name":"2015 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Possible use of evolving c-regression clustering for energy consumption profiles classification\",\"authors\":\"D. Dovžan, I. Škrjanc\",\"doi\":\"10.1109/EAIS.2015.7368792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an idea for classification of energy consumption profiles using an evolving c-regression method is presented. Cluster prototypes (centers) are usually defined as a mean of data around the center. The cluster center is a vector of numerical values. The method presented in this paper uses Takagi-Sugeno fuzzy models as a cluster prototype. Beside the method description also preliminary results of energy consumption profiles classification are given.\",\"PeriodicalId\":325875,\"journal\":{\"name\":\"2015 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EAIS.2015.7368792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2015.7368792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种利用进化的c回归方法对能源消耗曲线进行分类的思路。集群原型(中心)通常被定义为中心周围数据的平均值。聚类中心是一个数值向量。本文提出的方法采用Takagi-Sugeno模糊模型作为聚类原型。在对方法进行描述的同时,给出了能耗曲线分类的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Possible use of evolving c-regression clustering for energy consumption profiles classification
In this paper an idea for classification of energy consumption profiles using an evolving c-regression method is presented. Cluster prototypes (centers) are usually defined as a mean of data around the center. The cluster center is a vector of numerical values. The method presented in this paper uses Takagi-Sugeno fuzzy models as a cluster prototype. Beside the method description also preliminary results of energy consumption profiles classification are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信