Mori梦想空间和爆炸

Ana-Maria Castravet
{"title":"Mori梦想空间和爆炸","authors":"Ana-Maria Castravet","doi":"10.1090/PSPUM/097.1/01671","DOIUrl":null,"url":null,"abstract":"The goal of the present article is to survey the general theory of Mori Dream Spaces, with special regards to the question: When is the blow-up of toric variety at a general point a Mori Dream Space? We translate the question for toric surfaces of Picard number one into an interpolation problem involving points in the projective plane. An instance of such an interpolation problem is the Gonzalez-Karu theorem that gives new examples of weighted projective planes whose blow-up at a general point is not a Mori Dream Space.","PeriodicalId":412716,"journal":{"name":"Algebraic Geometry: Salt Lake City\n 2015","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Mori dream spaces and blow-ups\",\"authors\":\"Ana-Maria Castravet\",\"doi\":\"10.1090/PSPUM/097.1/01671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of the present article is to survey the general theory of Mori Dream Spaces, with special regards to the question: When is the blow-up of toric variety at a general point a Mori Dream Space? We translate the question for toric surfaces of Picard number one into an interpolation problem involving points in the projective plane. An instance of such an interpolation problem is the Gonzalez-Karu theorem that gives new examples of weighted projective planes whose blow-up at a general point is not a Mori Dream Space.\",\"PeriodicalId\":412716,\"journal\":{\"name\":\"Algebraic Geometry: Salt Lake City\\n 2015\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry: Salt Lake City\\n 2015\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PSPUM/097.1/01671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry: Salt Lake City\n 2015","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/097.1/01671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文的目的是调查Mori梦空间的一般理论,特别是关于这个问题:什么时候在一个一般点上的环形变化的爆炸是Mori梦空间?我们将Picard 1的环面问题转化为涉及射影平面上点的插值问题。这种插值问题的一个实例是Gonzalez-Karu定理,它给出了加权投影平面的新例子,这些平面在一般点上的膨胀不是Mori梦空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mori dream spaces and blow-ups
The goal of the present article is to survey the general theory of Mori Dream Spaces, with special regards to the question: When is the blow-up of toric variety at a general point a Mori Dream Space? We translate the question for toric surfaces of Picard number one into an interpolation problem involving points in the projective plane. An instance of such an interpolation problem is the Gonzalez-Karu theorem that gives new examples of weighted projective planes whose blow-up at a general point is not a Mori Dream Space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信