利用gan实现测距传感器数据的语义分割

V. Lekic, Z. Babic
{"title":"利用gan实现测距传感器数据的语义分割","authors":"V. Lekic, Z. Babic","doi":"10.1109/ZINC.2018.8448963","DOIUrl":null,"url":null,"abstract":"Ranging sensors, such as radar and lidar, onboard the vehicle are considered to be very robust under changing environmental conditions. Largely owing to this reputation, they have found broad applicability in driver assistance, and consequently in autonomous driving systems. On the other hand, they lack precision. This makes classification tasks of the measurement data rather difficult. In this paper, we propose a method for semantic segmentation of the ranging sensors data using generative adversarial networks. Utilizing the fully unsupervised learning algorithm, we convert the sensor data to artificial, camera-like, environmental images that are further used as input for semantic image segmentation algorithms.","PeriodicalId":366195,"journal":{"name":"2018 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using GANs to Enable Semantic Segmentation of Ranging Sensor Data\",\"authors\":\"V. Lekic, Z. Babic\",\"doi\":\"10.1109/ZINC.2018.8448963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ranging sensors, such as radar and lidar, onboard the vehicle are considered to be very robust under changing environmental conditions. Largely owing to this reputation, they have found broad applicability in driver assistance, and consequently in autonomous driving systems. On the other hand, they lack precision. This makes classification tasks of the measurement data rather difficult. In this paper, we propose a method for semantic segmentation of the ranging sensors data using generative adversarial networks. Utilizing the fully unsupervised learning algorithm, we convert the sensor data to artificial, camera-like, environmental images that are further used as input for semantic image segmentation algorithms.\",\"PeriodicalId\":366195,\"journal\":{\"name\":\"2018 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ZINC.2018.8448963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC.2018.8448963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

车载测距传感器,如雷达和激光雷达,被认为在不断变化的环境条件下非常稳健。在很大程度上,由于这种声誉,它们在驾驶员辅助以及自动驾驶系统中得到了广泛的应用。另一方面,它们缺乏精确性。这使得测量数据的分类任务相当困难。本文提出了一种基于生成对抗网络的测距传感器数据语义分割方法。利用完全无监督学习算法,我们将传感器数据转换为人工的、类似相机的环境图像,这些图像进一步用作语义图像分割算法的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using GANs to Enable Semantic Segmentation of Ranging Sensor Data
Ranging sensors, such as radar and lidar, onboard the vehicle are considered to be very robust under changing environmental conditions. Largely owing to this reputation, they have found broad applicability in driver assistance, and consequently in autonomous driving systems. On the other hand, they lack precision. This makes classification tasks of the measurement data rather difficult. In this paper, we propose a method for semantic segmentation of the ranging sensors data using generative adversarial networks. Utilizing the fully unsupervised learning algorithm, we convert the sensor data to artificial, camera-like, environmental images that are further used as input for semantic image segmentation algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信