解耦心脏反应扩散模型的可扩展Newton-Krylov-BDDC和FETI-DP豪华求解器

N. Huynh, L. Pavarino, S. Scacchi
{"title":"解耦心脏反应扩散模型的可扩展Newton-Krylov-BDDC和FETI-DP豪华求解器","authors":"N. Huynh, L. Pavarino, S. Scacchi","doi":"10.23967/WCCM-ECCOMAS.2020.294","DOIUrl":null,"url":null,"abstract":"Abstract. Two parallel Newton-Krylov Balancing Domain Decomposition by Constraints (BDDC) and Dual-Primal Finite Element Tearing and Interconnecting (FETI-DP) solvers are analyzed and numerically studied for implicit time discretizations of the Bidomain equations. This system models the cardiac bioelectrical activity and it consists of a degenerate system of two non-linear reaction-diffusion partial differential equations (PDEs), coupled with a stiff system of ordinary differential equations (ODEs). A non-linear algebraic system arises from a finite element discretization in space and an implicit discretization in time, based on decoupling the PDEs from the ODEs. Within each Newton iteration, the Jacobian linear system is solved by a Krylov method, accelerated by BDDC or FETI-DP preconditioners, both augmented with the recently introduced deluxe scaling of the dual variables. Several parallel numerical tests on Linux clusters confirm a novel polylogarithmic convergence rate bound, showing scalability and quasi-optimality of the proposed solvers.","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Scalable Newton-Krylov-BDDC and FETI-DP Deluxe Solvers for Decoupled Cardiac Reaction-Diffusion Models\",\"authors\":\"N. Huynh, L. Pavarino, S. Scacchi\",\"doi\":\"10.23967/WCCM-ECCOMAS.2020.294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Two parallel Newton-Krylov Balancing Domain Decomposition by Constraints (BDDC) and Dual-Primal Finite Element Tearing and Interconnecting (FETI-DP) solvers are analyzed and numerically studied for implicit time discretizations of the Bidomain equations. This system models the cardiac bioelectrical activity and it consists of a degenerate system of two non-linear reaction-diffusion partial differential equations (PDEs), coupled with a stiff system of ordinary differential equations (ODEs). A non-linear algebraic system arises from a finite element discretization in space and an implicit discretization in time, based on decoupling the PDEs from the ODEs. Within each Newton iteration, the Jacobian linear system is solved by a Krylov method, accelerated by BDDC or FETI-DP preconditioners, both augmented with the recently introduced deluxe scaling of the dual variables. Several parallel numerical tests on Linux clusters confirm a novel polylogarithmic convergence rate bound, showing scalability and quasi-optimality of the proposed solvers.\",\"PeriodicalId\":148883,\"journal\":{\"name\":\"14th WCCM-ECCOMAS Congress\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th WCCM-ECCOMAS Congress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/WCCM-ECCOMAS.2020.294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th WCCM-ECCOMAS Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要对两种并行Newton-Krylov平衡约束域分解(BDDC)和双原有限元撕裂互连(FETI-DP)求解方法进行了分析和数值研究,用于biddomain方程的隐式时间离散化。该系统模拟了心脏生物电活动,它由两个非线性反应扩散偏微分方程(PDEs)的退化系统和一个刚性常微分方程(ode)系统组成。非线性代数系统由空间上的有限元离散化和时间上的隐式离散化组成,基于微分方程和微分方程的解耦。在每次牛顿迭代中,雅可比线性系统由Krylov方法求解,由BDDC或FETI-DP预调节器加速,两者都增加了最近引入的对偶变量的豪华缩放。在Linux集群上的几个并行数值测试证实了一个新的多对数收敛速度界,显示了所提出的求解器的可扩展性和拟最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Newton-Krylov-BDDC and FETI-DP Deluxe Solvers for Decoupled Cardiac Reaction-Diffusion Models
Abstract. Two parallel Newton-Krylov Balancing Domain Decomposition by Constraints (BDDC) and Dual-Primal Finite Element Tearing and Interconnecting (FETI-DP) solvers are analyzed and numerically studied for implicit time discretizations of the Bidomain equations. This system models the cardiac bioelectrical activity and it consists of a degenerate system of two non-linear reaction-diffusion partial differential equations (PDEs), coupled with a stiff system of ordinary differential equations (ODEs). A non-linear algebraic system arises from a finite element discretization in space and an implicit discretization in time, based on decoupling the PDEs from the ODEs. Within each Newton iteration, the Jacobian linear system is solved by a Krylov method, accelerated by BDDC or FETI-DP preconditioners, both augmented with the recently introduced deluxe scaling of the dual variables. Several parallel numerical tests on Linux clusters confirm a novel polylogarithmic convergence rate bound, showing scalability and quasi-optimality of the proposed solvers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信