用多项式矩阵分解法计算有理曲线和曲面的μ基

J. Deng, Falai Chen, L. Shen
{"title":"用多项式矩阵分解法计算有理曲线和曲面的μ基","authors":"J. Deng, Falai Chen, L. Shen","doi":"10.1145/1073884.1073904","DOIUrl":null,"url":null,"abstract":"The μ-bases of rational curves/surfaces are newly developed tools which play an important role in connecting parametric forms and implicit forms of the rational curves/surfaces. They provide efficient algorithms to implicitize rational curves/surfaces as well as algorithms to compute singular points of rational curves and to reparametrize rational ruled surfaces. In this paper, we present an efficient algorithm to compute the μbasis of a rational curve/surface by using polynomial matrix factorization followed by a technique similar to Gaussian elimination. The algorithm is shown superior than previous algorithms to compute the μ-basis of a rational curve, and it is the only known algorithm that can rigorously compute the μ-basis of a general rational surface. We present some examples to illustrate the algorithm.","PeriodicalId":311546,"journal":{"name":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Computing μ-bases of rational curves and surfaces using polynomial matrix factorization\",\"authors\":\"J. Deng, Falai Chen, L. Shen\",\"doi\":\"10.1145/1073884.1073904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The μ-bases of rational curves/surfaces are newly developed tools which play an important role in connecting parametric forms and implicit forms of the rational curves/surfaces. They provide efficient algorithms to implicitize rational curves/surfaces as well as algorithms to compute singular points of rational curves and to reparametrize rational ruled surfaces. In this paper, we present an efficient algorithm to compute the μbasis of a rational curve/surface by using polynomial matrix factorization followed by a technique similar to Gaussian elimination. The algorithm is shown superior than previous algorithms to compute the μ-basis of a rational curve, and it is the only known algorithm that can rigorously compute the μ-basis of a general rational surface. We present some examples to illustrate the algorithm.\",\"PeriodicalId\":311546,\"journal\":{\"name\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1073884.1073904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1073884.1073904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

有理曲线/曲面的μ基是一种新兴的工具,它在连接有理曲线/曲面的参数形式和隐式形式方面起着重要的作用。他们提供了有效的算法来隐化有理曲线/曲面以及计算有理曲线的奇异点和有理直纹曲面的再参数化。本文提出了一种计算有理曲线/曲面的μ基的有效算法,该算法首先采用多项式矩阵分解,然后采用类似高斯消去的方法。该算法在计算有理曲面的μ基方面优于以往的算法,是目前已知的唯一能严格计算一般有理曲面的μ基的算法。我们给出了一些例子来说明该算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing μ-bases of rational curves and surfaces using polynomial matrix factorization
The μ-bases of rational curves/surfaces are newly developed tools which play an important role in connecting parametric forms and implicit forms of the rational curves/surfaces. They provide efficient algorithms to implicitize rational curves/surfaces as well as algorithms to compute singular points of rational curves and to reparametrize rational ruled surfaces. In this paper, we present an efficient algorithm to compute the μbasis of a rational curve/surface by using polynomial matrix factorization followed by a technique similar to Gaussian elimination. The algorithm is shown superior than previous algorithms to compute the μ-basis of a rational curve, and it is the only known algorithm that can rigorously compute the μ-basis of a general rational surface. We present some examples to illustrate the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信